Dust trapping around Lagrangian points in protoplanetary disks

Autores
Montesinos, Matías; Garrido-Deutelmoser, Juan; Olofsson, Johan; Giuppone, Cristian Andrés; Cuadra, Jorge; Bayo, Amelia; Sucerquia, Mario; Cuello, Nicolás
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points L4 and L5. In the Solar System, these bodies show a broad size distribution ranging from micrometer (μm) to centimeter (cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. Methods. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1-10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of μm-cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. Results. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point L4 traps a larger amount of submillimeter (submm) particles than the trailing L5, which traps mostly mm-cm particles. However, the total bulk mass, with typical values of ~Mmoon, is more significant in L5 than in L4, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between L4 and L5. Conclusions. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.
Fil: Montesinos, Matías. Universidad de Valparaíso; Chile
Fil: Garrido-Deutelmoser, Juan. Pontificia Universidad Católica de Chile; Chile
Fil: Olofsson, Johan. Universidad de Valparaíso; Chile
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile
Fil: Bayo, Amelia. Universidad de Valparaíso; Chile
Fil: Sucerquia, Mario. Universidad de Valparaíso; Chile
Fil: Cuello, Nicolás. Universite Grenoble Alpes.; Francia
Materia
PLANET-DISK INTERACTIONS
PLANETS AND SATELLITES: FORMATION
PROTOPLANETARY DISKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/130243

id CONICETDig_3c50e11ed3c45b44116d81a412ed11a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/130243
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dust trapping around Lagrangian points in protoplanetary disksMontesinos, MatíasGarrido-Deutelmoser, JuanOlofsson, JohanGiuppone, Cristian AndrésCuadra, JorgeBayo, AmeliaSucerquia, MarioCuello, NicolásPLANET-DISK INTERACTIONSPLANETS AND SATELLITES: FORMATIONPROTOPLANETARY DISKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points L4 and L5. In the Solar System, these bodies show a broad size distribution ranging from micrometer (μm) to centimeter (cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. Methods. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1-10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of μm-cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. Results. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point L4 traps a larger amount of submillimeter (submm) particles than the trailing L5, which traps mostly mm-cm particles. However, the total bulk mass, with typical values of ~Mmoon, is more significant in L5 than in L4, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between L4 and L5. Conclusions. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.Fil: Montesinos, Matías. Universidad de Valparaíso; ChileFil: Garrido-Deutelmoser, Juan. Pontificia Universidad Católica de Chile; ChileFil: Olofsson, Johan. Universidad de Valparaíso; ChileFil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; ChileFil: Bayo, Amelia. Universidad de Valparaíso; ChileFil: Sucerquia, Mario. Universidad de Valparaíso; ChileFil: Cuello, Nicolás. Universite Grenoble Alpes.; FranciaEDP Sciences2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/130243Montesinos, Matías; Garrido-Deutelmoser, Juan; Olofsson, Johan; Giuppone, Cristian Andrés; Cuadra, Jorge; et al.; Dust trapping around Lagrangian points in protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 642; 10-2020; 1-170004-63611432-0746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202038758info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038758info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:31Zoai:ri.conicet.gov.ar:11336/130243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:31.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dust trapping around Lagrangian points in protoplanetary disks
title Dust trapping around Lagrangian points in protoplanetary disks
spellingShingle Dust trapping around Lagrangian points in protoplanetary disks
Montesinos, Matías
PLANET-DISK INTERACTIONS
PLANETS AND SATELLITES: FORMATION
PROTOPLANETARY DISKS
title_short Dust trapping around Lagrangian points in protoplanetary disks
title_full Dust trapping around Lagrangian points in protoplanetary disks
title_fullStr Dust trapping around Lagrangian points in protoplanetary disks
title_full_unstemmed Dust trapping around Lagrangian points in protoplanetary disks
title_sort Dust trapping around Lagrangian points in protoplanetary disks
dc.creator.none.fl_str_mv Montesinos, Matías
Garrido-Deutelmoser, Juan
Olofsson, Johan
Giuppone, Cristian Andrés
Cuadra, Jorge
Bayo, Amelia
Sucerquia, Mario
Cuello, Nicolás
author Montesinos, Matías
author_facet Montesinos, Matías
Garrido-Deutelmoser, Juan
Olofsson, Johan
Giuppone, Cristian Andrés
Cuadra, Jorge
Bayo, Amelia
Sucerquia, Mario
Cuello, Nicolás
author_role author
author2 Garrido-Deutelmoser, Juan
Olofsson, Johan
Giuppone, Cristian Andrés
Cuadra, Jorge
Bayo, Amelia
Sucerquia, Mario
Cuello, Nicolás
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PLANET-DISK INTERACTIONS
PLANETS AND SATELLITES: FORMATION
PROTOPLANETARY DISKS
topic PLANET-DISK INTERACTIONS
PLANETS AND SATELLITES: FORMATION
PROTOPLANETARY DISKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points L4 and L5. In the Solar System, these bodies show a broad size distribution ranging from micrometer (μm) to centimeter (cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. Methods. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1-10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of μm-cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. Results. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point L4 traps a larger amount of submillimeter (submm) particles than the trailing L5, which traps mostly mm-cm particles. However, the total bulk mass, with typical values of ~Mmoon, is more significant in L5 than in L4, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between L4 and L5. Conclusions. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.
Fil: Montesinos, Matías. Universidad de Valparaíso; Chile
Fil: Garrido-Deutelmoser, Juan. Pontificia Universidad Católica de Chile; Chile
Fil: Olofsson, Johan. Universidad de Valparaíso; Chile
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile
Fil: Bayo, Amelia. Universidad de Valparaíso; Chile
Fil: Sucerquia, Mario. Universidad de Valparaíso; Chile
Fil: Cuello, Nicolás. Universite Grenoble Alpes.; Francia
description Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points L4 and L5. In the Solar System, these bodies show a broad size distribution ranging from micrometer (μm) to centimeter (cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. Methods. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1-10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of μm-cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. Results. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point L4 traps a larger amount of submillimeter (submm) particles than the trailing L5, which traps mostly mm-cm particles. However, the total bulk mass, with typical values of ~Mmoon, is more significant in L5 than in L4, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between L4 and L5. Conclusions. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/130243
Montesinos, Matías; Garrido-Deutelmoser, Juan; Olofsson, Johan; Giuppone, Cristian Andrés; Cuadra, Jorge; et al.; Dust trapping around Lagrangian points in protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 642; 10-2020; 1-17
0004-6361
1432-0746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/130243
identifier_str_mv Montesinos, Matías; Garrido-Deutelmoser, Juan; Olofsson, Johan; Giuppone, Cristian Andrés; Cuadra, Jorge; et al.; Dust trapping around Lagrangian points in protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 642; 10-2020; 1-17
0004-6361
1432-0746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202038758
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038758
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981239893524480
score 12.48226