Optimization Models for Planning Shale Gas Well Refracture Treatments
- Autores
- Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos - Materia
-
Shale Gas
Mixed-Integer Programming
Refracturing
Planning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18637
Ver los metadatos del registro completo
id |
CONICETDig_c6a9e9cca436ceeae2db78366e905429 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18637 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization Models for Planning Shale Gas Well Refracture TreatmentsCafaro, Diego CarlosDrouven, MarkusGrossmann, IgnacioShale GasMixed-Integer ProgrammingRefracturingPlanninghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaFil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosJohn Wiley & Sons Inc2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18637Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-43070001-1541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15330info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15330/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:37Zoai:ri.conicet.gov.ar:11336/18637instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:37.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
title |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
spellingShingle |
Optimization Models for Planning Shale Gas Well Refracture Treatments Cafaro, Diego Carlos Shale Gas Mixed-Integer Programming Refracturing Planning |
title_short |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
title_full |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
title_fullStr |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
title_full_unstemmed |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
title_sort |
Optimization Models for Planning Shale Gas Well Refracture Treatments |
dc.creator.none.fl_str_mv |
Cafaro, Diego Carlos Drouven, Markus Grossmann, Ignacio |
author |
Cafaro, Diego Carlos |
author_facet |
Cafaro, Diego Carlos Drouven, Markus Grossmann, Ignacio |
author_role |
author |
author2 |
Drouven, Markus Grossmann, Ignacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Shale Gas Mixed-Integer Programming Refracturing Planning |
topic |
Shale Gas Mixed-Integer Programming Refracturing Planning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD. Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina Fil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos |
description |
Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18637 Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-4307 0001-1541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18637 |
identifier_str_mv |
Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-4307 0001-1541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15330 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15330/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268744354627584 |
score |
13.13397 |