Optimization Models for Planning Shale Gas Well Refracture Treatments

Autores
Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Materia
Shale Gas
Mixed-Integer Programming
Refracturing
Planning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18637

id CONICETDig_c6a9e9cca436ceeae2db78366e905429
oai_identifier_str oai:ri.conicet.gov.ar:11336/18637
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimization Models for Planning Shale Gas Well Refracture TreatmentsCafaro, Diego CarlosDrouven, MarkusGrossmann, IgnacioShale GasMixed-Integer ProgrammingRefracturingPlanninghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaFil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosJohn Wiley & Sons Inc2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18637Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-43070001-1541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15330info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15330/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:37Zoai:ri.conicet.gov.ar:11336/18637instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:37.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimization Models for Planning Shale Gas Well Refracture Treatments
title Optimization Models for Planning Shale Gas Well Refracture Treatments
spellingShingle Optimization Models for Planning Shale Gas Well Refracture Treatments
Cafaro, Diego Carlos
Shale Gas
Mixed-Integer Programming
Refracturing
Planning
title_short Optimization Models for Planning Shale Gas Well Refracture Treatments
title_full Optimization Models for Planning Shale Gas Well Refracture Treatments
title_fullStr Optimization Models for Planning Shale Gas Well Refracture Treatments
title_full_unstemmed Optimization Models for Planning Shale Gas Well Refracture Treatments
title_sort Optimization Models for Planning Shale Gas Well Refracture Treatments
dc.creator.none.fl_str_mv Cafaro, Diego Carlos
Drouven, Markus
Grossmann, Ignacio
author Cafaro, Diego Carlos
author_facet Cafaro, Diego Carlos
Drouven, Markus
Grossmann, Ignacio
author_role author
author2 Drouven, Markus
Grossmann, Ignacio
author2_role author
author
dc.subject.none.fl_str_mv Shale Gas
Mixed-Integer Programming
Refracturing
Planning
topic Shale Gas
Mixed-Integer Programming
Refracturing
Planning
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Drouven, Markus. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
description Refracturing is a promising option for addressing the characteristically steep decline curves of shale gas wells. In this work we propose two optimization models to address the refracturing planning problem. First, we present a continuous time nonlinear programming model based on a novel forecast function that predicts pre- and post-treatment productivity declines. Next, we propose a discrete-time, multi-period mixed-integer linear programming (MILP) model that explicitly accounts for the possibility of multiple refracture treatments over the lifespan of a well. In an attempt to reduce solution times to a minimum, we compare three alternative formulations against each other (big-M formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) and find that the disjunctive models yield the best computational performance. Finally, we apply the proposed MILP model to two case studies to demonstrate how refracturing can increase the expected recovery of a well and improve its profitability by several hundred thousand USD.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18637
Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-4307
0001-1541
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18637
identifier_str_mv Cafaro, Diego Carlos; Drouven, Markus; Grossmann, Ignacio; Optimization Models for Planning Shale Gas Well Refracture Treatments; John Wiley & Sons Inc; Aiche Journal; 62; 12; 12-2016; 4297-4307
0001-1541
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15330
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15330/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268744354627584
score 13.13397