Stochastic programming models for optimal shale well development and refracturing planning under uncertainty
- Autores
- Drouven, Markus G.; Grossmann, Ignacio E.; Cafaro, Diego Carlos
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we present an optimization framework for shale gas well development and refracturing planning. This problem is concerned with if and when a new shale gas well should be drilled at a prospective location, and whether or not it should be refractured over its lifespan. We account for exogenous gas price uncertainty and endogenous well performance uncertainty. We propose a mixed-integer linear, two-stage stochastic programming model embedded in a moving horizon strategy to dynamically solve the planning problem. A generalized production estimate function is described that predicts the gas production over time depending on how often a well has been refractured, and when exactly it was restimulated last. From a detailed case study, we conclude that early in the life of an active shale well, refracturing makes economic sense even in low-price environments, whereas additional restimulations only appear to be justified if prices are high.
Fil: Drouven, Markus G.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Shale Gas
Refracturing
Planning
Stochastic Programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20626
Ver los metadatos del registro completo
id |
CONICETDig_1052e7368bc2f2a98fc8cd3c9a459786 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20626 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stochastic programming models for optimal shale well development and refracturing planning under uncertaintyDrouven, Markus G.Grossmann, Ignacio E.Cafaro, Diego CarlosShale GasRefracturingPlanningStochastic Programminghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work we present an optimization framework for shale gas well development and refracturing planning. This problem is concerned with if and when a new shale gas well should be drilled at a prospective location, and whether or not it should be refractured over its lifespan. We account for exogenous gas price uncertainty and endogenous well performance uncertainty. We propose a mixed-integer linear, two-stage stochastic programming model embedded in a moving horizon strategy to dynamically solve the planning problem. A generalized production estimate function is described that predicts the gas production over time depending on how often a well has been refractured, and when exactly it was restimulated last. From a detailed case study, we conclude that early in the life of an active shale well, refracturing makes economic sense even in low-price environments, whereas additional restimulations only appear to be justified if prices are high.Fil: Drouven, Markus G.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaWiley2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20626Drouven, Markus G.; Grossmann, Ignacio E.; Cafaro, Diego Carlos; Stochastic programming models for optimal shale well development and refracturing planning under uncertainty; Wiley; Aiche Journal; 6-20170001-1541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15804info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15804/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:25Zoai:ri.conicet.gov.ar:11336/20626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:25.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
title |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
spellingShingle |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty Drouven, Markus G. Shale Gas Refracturing Planning Stochastic Programming |
title_short |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
title_full |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
title_fullStr |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
title_full_unstemmed |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
title_sort |
Stochastic programming models for optimal shale well development and refracturing planning under uncertainty |
dc.creator.none.fl_str_mv |
Drouven, Markus G. Grossmann, Ignacio E. Cafaro, Diego Carlos |
author |
Drouven, Markus G. |
author_facet |
Drouven, Markus G. Grossmann, Ignacio E. Cafaro, Diego Carlos |
author_role |
author |
author2 |
Grossmann, Ignacio E. Cafaro, Diego Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Shale Gas Refracturing Planning Stochastic Programming |
topic |
Shale Gas Refracturing Planning Stochastic Programming |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we present an optimization framework for shale gas well development and refracturing planning. This problem is concerned with if and when a new shale gas well should be drilled at a prospective location, and whether or not it should be refractured over its lifespan. We account for exogenous gas price uncertainty and endogenous well performance uncertainty. We propose a mixed-integer linear, two-stage stochastic programming model embedded in a moving horizon strategy to dynamically solve the planning problem. A generalized production estimate function is described that predicts the gas production over time depending on how often a well has been refractured, and when exactly it was restimulated last. From a detailed case study, we conclude that early in the life of an active shale well, refracturing makes economic sense even in low-price environments, whereas additional restimulations only appear to be justified if prices are high. Fil: Drouven, Markus G.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
In this work we present an optimization framework for shale gas well development and refracturing planning. This problem is concerned with if and when a new shale gas well should be drilled at a prospective location, and whether or not it should be refractured over its lifespan. We account for exogenous gas price uncertainty and endogenous well performance uncertainty. We propose a mixed-integer linear, two-stage stochastic programming model embedded in a moving horizon strategy to dynamically solve the planning problem. A generalized production estimate function is described that predicts the gas production over time depending on how often a well has been refractured, and when exactly it was restimulated last. From a detailed case study, we conclude that early in the life of an active shale well, refracturing makes economic sense even in low-price environments, whereas additional restimulations only appear to be justified if prices are high. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20626 Drouven, Markus G.; Grossmann, Ignacio E.; Cafaro, Diego Carlos; Stochastic programming models for optimal shale well development and refracturing planning under uncertainty; Wiley; Aiche Journal; 6-2017 0001-1541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20626 |
identifier_str_mv |
Drouven, Markus G.; Grossmann, Ignacio E.; Cafaro, Diego Carlos; Stochastic programming models for optimal shale well development and refracturing planning under uncertainty; Wiley; Aiche Journal; 6-2017 0001-1541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/aic.15804 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.15804/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269957778309120 |
score |
13.13397 |