A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations
- Autores
- Mendez, Carlos Alberto; Grossmann, Ignacio E.; Harjunkoski, I.; Kaboré, P.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-term scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterative procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thus, the solution of a very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentrations for products, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible problems are presented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MINLP solvers to demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problems. The new method is illustrated with several real world problems requiring very low computational requirements.
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados Unidos
Fil: Harjunkoski, I.. ABB Corporate Research Center; Alemania
Fil: Kaboré, P.. ABB Corporate Research Center; Alemania - Materia
-
Scheduling And Planning;
Blending
Refinery Operations
Mixed-Integer Programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21457
Ver los metadatos del registro completo
id |
CONICETDig_9fb768136980c437c55b2311facb2013 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21457 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operationsMendez, Carlos AlbertoGrossmann, Ignacio E.Harjunkoski, I.Kaboré, P.Scheduling And Planning;BlendingRefinery OperationsMixed-Integer Programminghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-term scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterative procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thus, the solution of a very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentrations for products, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible problems are presented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MINLP solvers to demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problems. The new method is illustrated with several real world problems requiring very low computational requirements.Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados UnidosFil: Harjunkoski, I.. ABB Corporate Research Center; AlemaniaFil: Kaboré, P.. ABB Corporate Research Center; AlemaniaElsevier2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21457Mendez, Carlos Alberto; Grossmann, Ignacio E.; Harjunkoski, I.; Kaboré, P.; A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations; Elsevier; Computers and Chemical Engineering; 30; 4; 12-2006; 614-6340098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2005.11.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135405002966?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:03Zoai:ri.conicet.gov.ar:11336/21457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:04.266CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
title |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
spellingShingle |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations Mendez, Carlos Alberto Scheduling And Planning; Blending Refinery Operations Mixed-Integer Programming |
title_short |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
title_full |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
title_fullStr |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
title_full_unstemmed |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
title_sort |
A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations |
dc.creator.none.fl_str_mv |
Mendez, Carlos Alberto Grossmann, Ignacio E. Harjunkoski, I. Kaboré, P. |
author |
Mendez, Carlos Alberto |
author_facet |
Mendez, Carlos Alberto Grossmann, Ignacio E. Harjunkoski, I. Kaboré, P. |
author_role |
author |
author2 |
Grossmann, Ignacio E. Harjunkoski, I. Kaboré, P. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Scheduling And Planning; Blending Refinery Operations Mixed-Integer Programming |
topic |
Scheduling And Planning; Blending Refinery Operations Mixed-Integer Programming |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-term scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterative procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thus, the solution of a very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentrations for products, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible problems are presented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MINLP solvers to demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problems. The new method is illustrated with several real world problems requiring very low computational requirements. Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados Unidos Fil: Harjunkoski, I.. ABB Corporate Research Center; Alemania Fil: Kaboré, P.. ABB Corporate Research Center; Alemania |
description |
This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-term scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterative procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thus, the solution of a very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentrations for products, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible problems are presented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MINLP solvers to demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problems. The new method is illustrated with several real world problems requiring very low computational requirements. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21457 Mendez, Carlos Alberto; Grossmann, Ignacio E.; Harjunkoski, I.; Kaboré, P.; A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations; Elsevier; Computers and Chemical Engineering; 30; 4; 12-2006; 614-634 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21457 |
identifier_str_mv |
Mendez, Carlos Alberto; Grossmann, Ignacio E.; Harjunkoski, I.; Kaboré, P.; A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations; Elsevier; Computers and Chemical Engineering; 30; 4; 12-2006; 614-634 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2005.11.004 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135405002966?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269010730680320 |
score |
13.13397 |