From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag

Autores
Plastino, Ángel Ricardo; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q-Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.
Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Pergamino); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil. Santa Fe Institute; Estados Unidos. Complexity Science Hub Vienna; Austria
Materia
Nonlinear Fokker-Planck Equation
Vlasov Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100101

id CONICETDig_c68eb4719b1a5ab625d1880d212ec607
oai_identifier_str oai:ri.conicet.gov.ar:11336/100101
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with dragPlastino, Ángel RicardoCurado, E. M. F.Nobre, F. D.Tsallis, C.Nonlinear Fokker-Planck EquationVlasov Equationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q-Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Pergamino); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil. Santa Fe Institute; Estados Unidos. Complexity Science Hub Vienna; AustriaAmerican Physical Society2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100101Plastino, Ángel Ricardo; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag; American Physical Society; Physical Review E; 97; 2; 2-2018; 1-102470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.022120info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.022120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:38Zoai:ri.conicet.gov.ar:11336/100101instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:39.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
title From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
spellingShingle From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
Plastino, Ángel Ricardo
Nonlinear Fokker-Planck Equation
Vlasov Equation
title_short From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
title_full From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
title_fullStr From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
title_full_unstemmed From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
title_sort From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag
dc.creator.none.fl_str_mv Plastino, Ángel Ricardo
Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author Plastino, Ángel Ricardo
author_facet Plastino, Ángel Ricardo
Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author_role author
author2 Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author2_role author
author
author
dc.subject.none.fl_str_mv Nonlinear Fokker-Planck Equation
Vlasov Equation
topic Nonlinear Fokker-Planck Equation
Vlasov Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q-Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.
Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Pergamino); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil. Santa Fe Institute; Estados Unidos. Complexity Science Hub Vienna; Austria
description Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q-Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100101
Plastino, Ángel Ricardo; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag; American Physical Society; Physical Review E; 97; 2; 2-2018; 1-10
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100101
identifier_str_mv Plastino, Ángel Ricardo; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag; American Physical Society; Physical Review E; 97; 2; 2-2018; 1-10
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.022120
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.022120
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614130908004352
score 13.070432