New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
- Autores
- Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.
Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
Dew Computing
Edge Computing
Mobile Devices
Job Scheduling
Scheduling Heuristics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182930
Ver los metadatos del registro completo
id |
CONICETDig_c4db7b492140765984d7acc931fc2d78 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing EnvironmentsSanabria, PabloTapia, Tomás FelipeNeyem, AndresBenedetto, Jose IgnacioHirsch Jofré, Matías EberardoMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioDew ComputingEdge ComputingMobile DevicesJob SchedulingScheduling Heuristicshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaJohn Wiley & Sons2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182930Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-121530-8669CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/wcmc/2021/8899660/info:eu-repo/semantics/altIdentifier/doi/10.1155/2021/8899660info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:28Zoai:ri.conicet.gov.ar:11336/182930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:28.46CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
title |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
spellingShingle |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments Sanabria, Pablo Dew Computing Edge Computing Mobile Devices Job Scheduling Scheduling Heuristics |
title_short |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
title_full |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
title_fullStr |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
title_full_unstemmed |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
title_sort |
New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments |
dc.creator.none.fl_str_mv |
Sanabria, Pablo Tapia, Tomás Felipe Neyem, Andres Benedetto, Jose Ignacio Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author |
Sanabria, Pablo |
author_facet |
Sanabria, Pablo Tapia, Tomás Felipe Neyem, Andres Benedetto, Jose Ignacio Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author_role |
author |
author2 |
Tapia, Tomás Felipe Neyem, Andres Benedetto, Jose Ignacio Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Dew Computing Edge Computing Mobile Devices Job Scheduling Scheduling Heuristics |
topic |
Dew Computing Edge Computing Mobile Devices Job Scheduling Scheduling Heuristics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature. Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile Fil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile Fil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile Fil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182930 Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-12 1530-8669 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182930 |
identifier_str_mv |
Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-12 1530-8669 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/wcmc/2021/8899660/ info:eu-repo/semantics/altIdentifier/doi/10.1155/2021/8899660 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268796698492928 |
score |
13.13397 |