New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments

Autores
Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.
Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
Dew Computing
Edge Computing
Mobile Devices
Job Scheduling
Scheduling Heuristics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182930

id CONICETDig_c4db7b492140765984d7acc931fc2d78
oai_identifier_str oai:ri.conicet.gov.ar:11336/182930
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing EnvironmentsSanabria, PabloTapia, Tomás FelipeNeyem, AndresBenedetto, Jose IgnacioHirsch Jofré, Matías EberardoMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioDew ComputingEdge ComputingMobile DevicesJob SchedulingScheduling Heuristicshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; ChileFil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaJohn Wiley & Sons2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182930Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-121530-8669CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/wcmc/2021/8899660/info:eu-repo/semantics/altIdentifier/doi/10.1155/2021/8899660info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:28Zoai:ri.conicet.gov.ar:11336/182930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:28.46CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
title New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
spellingShingle New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
Sanabria, Pablo
Dew Computing
Edge Computing
Mobile Devices
Job Scheduling
Scheduling Heuristics
title_short New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
title_full New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
title_fullStr New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
title_full_unstemmed New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
title_sort New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments
dc.creator.none.fl_str_mv Sanabria, Pablo
Tapia, Tomás Felipe
Neyem, Andres
Benedetto, Jose Ignacio
Hirsch Jofré, Matías Eberardo
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
author Sanabria, Pablo
author_facet Sanabria, Pablo
Tapia, Tomás Felipe
Neyem, Andres
Benedetto, Jose Ignacio
Hirsch Jofré, Matías Eberardo
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
author_role author
author2 Tapia, Tomás Felipe
Neyem, Andres
Benedetto, Jose Ignacio
Hirsch Jofré, Matías Eberardo
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Dew Computing
Edge Computing
Mobile Devices
Job Scheduling
Scheduling Heuristics
topic Dew Computing
Edge Computing
Mobile Devices
Job Scheduling
Scheduling Heuristics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.
Fil: Sanabria, Pablo. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Tapia, Tomás Felipe. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Neyem, Andres. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Benedetto, Jose Ignacio. Pontificia Universidad Catolica de Chile. Escuela de Ingeniería; Chile
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices' ubiquity and their evergrowing processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources, typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices' power source for scheduling tasks in hybrid environments, i.e., where the battery- A nd non-battery-powered devices cooperate. We simulated hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices' battery behavior using battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments than other algorithms found in the literature.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182930
Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-12
1530-8669
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182930
identifier_str_mv Sanabria, Pablo; Tapia, Tomás Felipe; Neyem, Andres; Benedetto, Jose Ignacio; Hirsch Jofré, Matías Eberardo; et al.; New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments; John Wiley & Sons; Wireless Communications & Mobile Computing; 2021; 3-2021; 1-12
1530-8669
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/wcmc/2021/8899660/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2021/8899660
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons
publisher.none.fl_str_mv John Wiley & Sons
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268796698492928
score 13.13397