Fast computation of a rational point of a variety over a finite field
- Autores
- Cafure, A.; Matera, G.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society.
Fil:Cafure, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Math. Comput. 2006;75(256):2049-2085
- Materia
-
First Bertini theorem
Geometric solutions
Probabilistic algorithms
Rational points
Straight-line programs
Varieties over finite fields - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00255718_v75_n256_p2049_Cafure
Ver los metadatos del registro completo
id |
BDUBAFCEN_c2a6f5ca4ca9ed666997db3dbcc77dd2 |
---|---|
oai_identifier_str |
paperaa:paper_00255718_v75_n256_p2049_Cafure |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Fast computation of a rational point of a variety over a finite fieldCafure, A.Matera, G.First Bertini theoremGeometric solutionsProbabilistic algorithmsRational pointsStraight-line programsVarieties over finite fieldsWe exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society.Fil:Cafure, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_CafureMath. Comput. 2006;75(256):2049-2085reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:54Zpaperaa:paper_00255718_v75_n256_p2049_CafureInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.193Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Fast computation of a rational point of a variety over a finite field |
title |
Fast computation of a rational point of a variety over a finite field |
spellingShingle |
Fast computation of a rational point of a variety over a finite field Cafure, A. First Bertini theorem Geometric solutions Probabilistic algorithms Rational points Straight-line programs Varieties over finite fields |
title_short |
Fast computation of a rational point of a variety over a finite field |
title_full |
Fast computation of a rational point of a variety over a finite field |
title_fullStr |
Fast computation of a rational point of a variety over a finite field |
title_full_unstemmed |
Fast computation of a rational point of a variety over a finite field |
title_sort |
Fast computation of a rational point of a variety over a finite field |
dc.creator.none.fl_str_mv |
Cafure, A. Matera, G. |
author |
Cafure, A. |
author_facet |
Cafure, A. Matera, G. |
author_role |
author |
author2 |
Matera, G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
First Bertini theorem Geometric solutions Probabilistic algorithms Rational points Straight-line programs Varieties over finite fields |
topic |
First Bertini theorem Geometric solutions Probabilistic algorithms Rational points Straight-line programs Varieties over finite fields |
dc.description.none.fl_txt_mv |
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society. Fil:Cafure, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure |
url |
http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Math. Comput. 2006;75(256):2049-2085 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618735110848512 |
score |
13.070432 |