Rational places in extensions and sequences of function fields of Kummer type
- Autores
- Chara, María de Los Ángeles; Toledano, R.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove results on the number of rational places in extensions of Kummer type over finite fields and give sufficient conditions for non-trivial lower bounds on the number of rational places at each step of sequences of function fields over a finite field, that we call $(a,b)$-sequences. In the case of a prime field, we apply these results to the study of rational places in certain sequences of function fields of Kummer type.
Fil: Chara, María de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Toledano, R.. Universidad Nacional del Litoral; Argentina - Materia
-
Function Fields
Finite Fields
Towers
Rational Places - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84085
Ver los metadatos del registro completo
| id |
CONICETDig_ae6e4aedc8413c7d187fdbf8664abde6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84085 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Rational places in extensions and sequences of function fields of Kummer typeChara, María de Los ÁngelesToledano, R.Function FieldsFinite FieldsTowersRational Placeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove results on the number of rational places in extensions of Kummer type over finite fields and give sufficient conditions for non-trivial lower bounds on the number of rational places at each step of sequences of function fields over a finite field, that we call $(a,b)$-sequences. In the case of a prime field, we apply these results to the study of rational places in certain sequences of function fields of Kummer type.Fil: Chara, María de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Toledano, R.. Universidad Nacional del Litoral; ArgentinaElsevier Science2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84085Chara, María de Los Ángeles; Toledano, R.; Rational places in extensions and sequences of function fields of Kummer type; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 11; 11-2011; 2603-26140022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2011.03.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:16Zoai:ri.conicet.gov.ar:11336/84085instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:16.382CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Rational places in extensions and sequences of function fields of Kummer type |
| title |
Rational places in extensions and sequences of function fields of Kummer type |
| spellingShingle |
Rational places in extensions and sequences of function fields of Kummer type Chara, María de Los Ángeles Function Fields Finite Fields Towers Rational Places |
| title_short |
Rational places in extensions and sequences of function fields of Kummer type |
| title_full |
Rational places in extensions and sequences of function fields of Kummer type |
| title_fullStr |
Rational places in extensions and sequences of function fields of Kummer type |
| title_full_unstemmed |
Rational places in extensions and sequences of function fields of Kummer type |
| title_sort |
Rational places in extensions and sequences of function fields of Kummer type |
| dc.creator.none.fl_str_mv |
Chara, María de Los Ángeles Toledano, R. |
| author |
Chara, María de Los Ángeles |
| author_facet |
Chara, María de Los Ángeles Toledano, R. |
| author_role |
author |
| author2 |
Toledano, R. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Function Fields Finite Fields Towers Rational Places |
| topic |
Function Fields Finite Fields Towers Rational Places |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we prove results on the number of rational places in extensions of Kummer type over finite fields and give sufficient conditions for non-trivial lower bounds on the number of rational places at each step of sequences of function fields over a finite field, that we call $(a,b)$-sequences. In the case of a prime field, we apply these results to the study of rational places in certain sequences of function fields of Kummer type. Fil: Chara, María de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Toledano, R.. Universidad Nacional del Litoral; Argentina |
| description |
In this paper we prove results on the number of rational places in extensions of Kummer type over finite fields and give sufficient conditions for non-trivial lower bounds on the number of rational places at each step of sequences of function fields over a finite field, that we call $(a,b)$-sequences. In the case of a prime field, we apply these results to the study of rational places in certain sequences of function fields of Kummer type. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84085 Chara, María de Los Ángeles; Toledano, R.; Rational places in extensions and sequences of function fields of Kummer type; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 11; 11-2011; 2603-2614 0022-4049 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/84085 |
| identifier_str_mv |
Chara, María de Los Ángeles; Toledano, R.; Rational places in extensions and sequences of function fields of Kummer type; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 11; 11-2011; 2603-2614 0022-4049 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2011.03.003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597301649473536 |
| score |
13.232712 |