Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field
- Autores
- Cafure, Antonio Artemio; Matera, Guillermo; Privitelli, Melina Lorena
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let V ⊂ double-struck Pn(double-struck F¯q) be a complete intersection defined over a finite field double-struck Fq of dimension r and singular locus of dimension at most s, and let π :V → double-struck Ps+1 (double-struck F¯q) be a generic linear mapping. We obtain an effective version of the Bertini smoothness theorem concerning π, namely an explicit upper bound of the degree of a proper Zariski closed subset of double-struck Ps+1(double-struck F¯q) which contains all the points defining singular fibers of π. For this purpose we make use of the concept of polar variety associated with the set of exceptional points of π. As a consequence, we obtain results of existence of smooth rational points of V, that is, conditions on q which imply that V has a smooth double-struck Fq-rational point. Finally, for s = r - 2 and s = r - 3 we estimate the number of double-struck Fq-rational points and smooth double-struck Fq-rational points of V.
Fil: Cafure, Antonio Artemio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Matera, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Privitelli, Melina Lorena. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
Bertini Smoothness Theorem
Deligne Estimate
Hooley-Katz Estimate
Multihomogeneous BÉZout Theorem
Polar Varieties
Rational Points
Singular Locus
Varieties Over Finite Fields - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37729
Ver los metadatos del registro completo
id |
CONICETDig_b42c1a80f70ec5b1ed92ef97710d5416 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37729 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite fieldCafure, Antonio ArtemioMatera, GuillermoPrivitelli, Melina LorenaBertini Smoothness TheoremDeligne EstimateHooley-Katz EstimateMultihomogeneous BÉZout TheoremPolar VarietiesRational PointsSingular LocusVarieties Over Finite Fieldshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let V ⊂ double-struck Pn(double-struck F¯q) be a complete intersection defined over a finite field double-struck Fq of dimension r and singular locus of dimension at most s, and let π :V → double-struck Ps+1 (double-struck F¯q) be a generic linear mapping. We obtain an effective version of the Bertini smoothness theorem concerning π, namely an explicit upper bound of the degree of a proper Zariski closed subset of double-struck Ps+1(double-struck F¯q) which contains all the points defining singular fibers of π. For this purpose we make use of the concept of polar variety associated with the set of exceptional points of π. As a consequence, we obtain results of existence of smooth rational points of V, that is, conditions on q which imply that V has a smooth double-struck Fq-rational point. Finally, for s = r - 2 and s = r - 3 we estimate the number of double-struck Fq-rational points and smooth double-struck Fq-rational points of V.Fil: Cafure, Antonio Artemio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Matera, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Privitelli, Melina Lorena. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37729Cafure, Antonio Artemio; Matera, Guillermo; Privitelli, Melina Lorena; Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field; Elsevier; Finite Fields and Their Applications; 31; 1-2015; 42-831071-5797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1071579714001051info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ffa.2014.09.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:09Zoai:ri.conicet.gov.ar:11336/37729instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:09.995CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
title |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
spellingShingle |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field Cafure, Antonio Artemio Bertini Smoothness Theorem Deligne Estimate Hooley-Katz Estimate Multihomogeneous BÉZout Theorem Polar Varieties Rational Points Singular Locus Varieties Over Finite Fields |
title_short |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
title_full |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
title_fullStr |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
title_full_unstemmed |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
title_sort |
Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field |
dc.creator.none.fl_str_mv |
Cafure, Antonio Artemio Matera, Guillermo Privitelli, Melina Lorena |
author |
Cafure, Antonio Artemio |
author_facet |
Cafure, Antonio Artemio Matera, Guillermo Privitelli, Melina Lorena |
author_role |
author |
author2 |
Matera, Guillermo Privitelli, Melina Lorena |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Bertini Smoothness Theorem Deligne Estimate Hooley-Katz Estimate Multihomogeneous BÉZout Theorem Polar Varieties Rational Points Singular Locus Varieties Over Finite Fields |
topic |
Bertini Smoothness Theorem Deligne Estimate Hooley-Katz Estimate Multihomogeneous BÉZout Theorem Polar Varieties Rational Points Singular Locus Varieties Over Finite Fields |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let V ⊂ double-struck Pn(double-struck F¯q) be a complete intersection defined over a finite field double-struck Fq of dimension r and singular locus of dimension at most s, and let π :V → double-struck Ps+1 (double-struck F¯q) be a generic linear mapping. We obtain an effective version of the Bertini smoothness theorem concerning π, namely an explicit upper bound of the degree of a proper Zariski closed subset of double-struck Ps+1(double-struck F¯q) which contains all the points defining singular fibers of π. For this purpose we make use of the concept of polar variety associated with the set of exceptional points of π. As a consequence, we obtain results of existence of smooth rational points of V, that is, conditions on q which imply that V has a smooth double-struck Fq-rational point. Finally, for s = r - 2 and s = r - 3 we estimate the number of double-struck Fq-rational points and smooth double-struck Fq-rational points of V. Fil: Cafure, Antonio Artemio. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina Fil: Matera, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina Fil: Privitelli, Melina Lorena. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
Let V ⊂ double-struck Pn(double-struck F¯q) be a complete intersection defined over a finite field double-struck Fq of dimension r and singular locus of dimension at most s, and let π :V → double-struck Ps+1 (double-struck F¯q) be a generic linear mapping. We obtain an effective version of the Bertini smoothness theorem concerning π, namely an explicit upper bound of the degree of a proper Zariski closed subset of double-struck Ps+1(double-struck F¯q) which contains all the points defining singular fibers of π. For this purpose we make use of the concept of polar variety associated with the set of exceptional points of π. As a consequence, we obtain results of existence of smooth rational points of V, that is, conditions on q which imply that V has a smooth double-struck Fq-rational point. Finally, for s = r - 2 and s = r - 3 we estimate the number of double-struck Fq-rational points and smooth double-struck Fq-rational points of V. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37729 Cafure, Antonio Artemio; Matera, Guillermo; Privitelli, Melina Lorena; Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field; Elsevier; Finite Fields and Their Applications; 31; 1-2015; 42-83 1071-5797 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37729 |
identifier_str_mv |
Cafure, Antonio Artemio; Matera, Guillermo; Privitelli, Melina Lorena; Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field; Elsevier; Finite Fields and Their Applications; 31; 1-2015; 42-83 1071-5797 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1071579714001051 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ffa.2014.09.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614085975474176 |
score |
13.070432 |