Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses
- Autores
- Milesi, Maria Mercedes; Wolf, Irma Veronica; Bergamini, Carina Viviana; Hynes, Erica Rut
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The contribution to flavor generation and secondary proteolysis of 2 strains of mesophilic lactobacilli isolated from cheese was studied. Miniature soft cheeses (200 g) were produced with or without the inclusion of a culture of Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.
Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; Argentina
Fil: Wolf, Irma Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
Fil: Bergamini, Carina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
Fil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina - Materia
-
NONSTARTER LACTOBACILLI
FLAVOR COMPOUND
SOFT CHEESE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101221
Ver los metadatos del registro completo
id |
CONICETDig_c3ee1669dd3ec80641aaa68a3db3a28d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101221 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheesesMilesi, Maria MercedesWolf, Irma VeronicaBergamini, Carina VivianaHynes, Erica RutNONSTARTER LACTOBACILLIFLAVOR COMPOUNDSOFT CHEESEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The contribution to flavor generation and secondary proteolysis of 2 strains of mesophilic lactobacilli isolated from cheese was studied. Miniature soft cheeses (200 g) were produced with or without the inclusion of a culture of Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Wolf, Irma Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Bergamini, Carina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaAmerican Dairy Science Association2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101221Milesi, Maria Mercedes; Wolf, Irma Veronica; Bergamini, Carina Viviana; Hynes, Erica Rut; Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses; American Dairy Science Association; Journal of Dairy Science; 93; 11; 7-2010; 5020-50310022-0302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3168/jds.2009-3043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:31Zoai:ri.conicet.gov.ar:11336/101221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:31.332CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
title |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
spellingShingle |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses Milesi, Maria Mercedes NONSTARTER LACTOBACILLI FLAVOR COMPOUND SOFT CHEESE |
title_short |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
title_full |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
title_fullStr |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
title_full_unstemmed |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
title_sort |
Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses |
dc.creator.none.fl_str_mv |
Milesi, Maria Mercedes Wolf, Irma Veronica Bergamini, Carina Viviana Hynes, Erica Rut |
author |
Milesi, Maria Mercedes |
author_facet |
Milesi, Maria Mercedes Wolf, Irma Veronica Bergamini, Carina Viviana Hynes, Erica Rut |
author_role |
author |
author2 |
Wolf, Irma Veronica Bergamini, Carina Viviana Hynes, Erica Rut |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NONSTARTER LACTOBACILLI FLAVOR COMPOUND SOFT CHEESE |
topic |
NONSTARTER LACTOBACILLI FLAVOR COMPOUND SOFT CHEESE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The contribution to flavor generation and secondary proteolysis of 2 strains of mesophilic lactobacilli isolated from cheese was studied. Miniature soft cheeses (200 g) were produced with or without the inclusion of a culture of Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis. Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; Argentina Fil: Wolf, Irma Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina Fil: Bergamini, Carina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina Fil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina |
description |
The contribution to flavor generation and secondary proteolysis of 2 strains of mesophilic lactobacilli isolated from cheese was studied. Miniature soft cheeses (200 g) were produced with or without the inclusion of a culture of Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101221 Milesi, Maria Mercedes; Wolf, Irma Veronica; Bergamini, Carina Viviana; Hynes, Erica Rut; Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses; American Dairy Science Association; Journal of Dairy Science; 93; 11; 7-2010; 5020-5031 0022-0302 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101221 |
identifier_str_mv |
Milesi, Maria Mercedes; Wolf, Irma Veronica; Bergamini, Carina Viviana; Hynes, Erica Rut; Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses; American Dairy Science Association; Journal of Dairy Science; 93; 11; 7-2010; 5020-5031 0022-0302 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3168/jds.2009-3043 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Dairy Science Association |
publisher.none.fl_str_mv |
American Dairy Science Association |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980021825699840 |
score |
12.993085 |