Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening

Autores
Milesi, Maria Mercedes; Candioti, Mario César; Hynes, Erica Rut
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new miniature cheese model obtained under controlled microbiological conditions was proposed, characterized and tested for reproducibility. Optimal heat treatment of cheesemilk was defined, as well as maximal ripening time. Miniature cheeses were obtained with batch pasteurized milk (65 °C, 30 min) and ripened at 5 °C. Lactic and nonlactic microbial populations were monitored by plate counts. Proteolysis was assessed by nitrogen fractions, electrophoresis and liquid chromatography, and a sniffing test was applied to evaluate aroma. Coliform bacteria decreased during ripening but moulds and yeasts increased up to 104 cfu/g after 60 d, which defined the end of ripening period. Starter population remained constant during all ripening (109 cfu/g), while nonstarter lactic acid bacteria increased from ~102 to 104 cfu/g. Soluble nitrogen levels at pH 4.6, in trichloracetic acid (0.73 mol/l) and in phosphotungtic acid (0.009 mol/l) were 151, 67, and 10 g/1000 g of the total nitrogen, respectively, after 60 d of ripening, which are usual values for soft cheeses. Proteolytic patterns as measured by electrophoresis were also similar to those of standard cheeses, as well as the aroma of the products. Peptide profiles revealed that the areas of most peaks increased with ripening time. The proposed model showed to be suitable for the production of mini cheese specimens for laboratory testing of cultures and enzymes in similar conditions to their real environment in the food matrix.
Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; Argentina
Fil: Candioti, Mario César. Universidad Nacional del Litoral; Argentina
Fil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
Materia
CHEESE COMPOSITION
MINIATURE CHEESE MODEL
PROTEOLYSIS
SOFT CHEESES
STARTER AND NONSTARTER BACTERIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113998

id CONICETDig_aa521869382e98482d5e51583430b308
oai_identifier_str oai:ri.conicet.gov.ar:11336/113998
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mini soft cheese as a simple model for biochemical studies on cheese-making and ripeningMilesi, Maria MercedesCandioti, Mario CésarHynes, Erica RutCHEESE COMPOSITIONMINIATURE CHEESE MODELPROTEOLYSISSOFT CHEESESSTARTER AND NONSTARTER BACTERIAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A new miniature cheese model obtained under controlled microbiological conditions was proposed, characterized and tested for reproducibility. Optimal heat treatment of cheesemilk was defined, as well as maximal ripening time. Miniature cheeses were obtained with batch pasteurized milk (65 °C, 30 min) and ripened at 5 °C. Lactic and nonlactic microbial populations were monitored by plate counts. Proteolysis was assessed by nitrogen fractions, electrophoresis and liquid chromatography, and a sniffing test was applied to evaluate aroma. Coliform bacteria decreased during ripening but moulds and yeasts increased up to 104 cfu/g after 60 d, which defined the end of ripening period. Starter population remained constant during all ripening (109 cfu/g), while nonstarter lactic acid bacteria increased from ~102 to 104 cfu/g. Soluble nitrogen levels at pH 4.6, in trichloracetic acid (0.73 mol/l) and in phosphotungtic acid (0.009 mol/l) were 151, 67, and 10 g/1000 g of the total nitrogen, respectively, after 60 d of ripening, which are usual values for soft cheeses. Proteolytic patterns as measured by electrophoresis were also similar to those of standard cheeses, as well as the aroma of the products. Peptide profiles revealed that the areas of most peaks increased with ripening time. The proposed model showed to be suitable for the production of mini cheese specimens for laboratory testing of cultures and enzymes in similar conditions to their real environment in the food matrix.Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Candioti, Mario César. Universidad Nacional del Litoral; ArgentinaFil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaElsevier Science2007-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113998Milesi, Maria Mercedes; Candioti, Mario César; Hynes, Erica Rut; Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening; Elsevier Science; LWT - Food Science and Technology; 40; 8; 8-2007; 1427-14330023-6438CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2006.08.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:59Zoai:ri.conicet.gov.ar:11336/113998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:59.35CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
title Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
spellingShingle Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
Milesi, Maria Mercedes
CHEESE COMPOSITION
MINIATURE CHEESE MODEL
PROTEOLYSIS
SOFT CHEESES
STARTER AND NONSTARTER BACTERIA
title_short Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
title_full Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
title_fullStr Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
title_full_unstemmed Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
title_sort Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening
dc.creator.none.fl_str_mv Milesi, Maria Mercedes
Candioti, Mario César
Hynes, Erica Rut
author Milesi, Maria Mercedes
author_facet Milesi, Maria Mercedes
Candioti, Mario César
Hynes, Erica Rut
author_role author
author2 Candioti, Mario César
Hynes, Erica Rut
author2_role author
author
dc.subject.none.fl_str_mv CHEESE COMPOSITION
MINIATURE CHEESE MODEL
PROTEOLYSIS
SOFT CHEESES
STARTER AND NONSTARTER BACTERIA
topic CHEESE COMPOSITION
MINIATURE CHEESE MODEL
PROTEOLYSIS
SOFT CHEESES
STARTER AND NONSTARTER BACTERIA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new miniature cheese model obtained under controlled microbiological conditions was proposed, characterized and tested for reproducibility. Optimal heat treatment of cheesemilk was defined, as well as maximal ripening time. Miniature cheeses were obtained with batch pasteurized milk (65 °C, 30 min) and ripened at 5 °C. Lactic and nonlactic microbial populations were monitored by plate counts. Proteolysis was assessed by nitrogen fractions, electrophoresis and liquid chromatography, and a sniffing test was applied to evaluate aroma. Coliform bacteria decreased during ripening but moulds and yeasts increased up to 104 cfu/g after 60 d, which defined the end of ripening period. Starter population remained constant during all ripening (109 cfu/g), while nonstarter lactic acid bacteria increased from ~102 to 104 cfu/g. Soluble nitrogen levels at pH 4.6, in trichloracetic acid (0.73 mol/l) and in phosphotungtic acid (0.009 mol/l) were 151, 67, and 10 g/1000 g of the total nitrogen, respectively, after 60 d of ripening, which are usual values for soft cheeses. Proteolytic patterns as measured by electrophoresis were also similar to those of standard cheeses, as well as the aroma of the products. Peptide profiles revealed that the areas of most peaks increased with ripening time. The proposed model showed to be suitable for the production of mini cheese specimens for laboratory testing of cultures and enzymes in similar conditions to their real environment in the food matrix.
Fil: Milesi, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; Argentina
Fil: Candioti, Mario César. Universidad Nacional del Litoral; Argentina
Fil: Hynes, Erica Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina
description A new miniature cheese model obtained under controlled microbiological conditions was proposed, characterized and tested for reproducibility. Optimal heat treatment of cheesemilk was defined, as well as maximal ripening time. Miniature cheeses were obtained with batch pasteurized milk (65 °C, 30 min) and ripened at 5 °C. Lactic and nonlactic microbial populations were monitored by plate counts. Proteolysis was assessed by nitrogen fractions, electrophoresis and liquid chromatography, and a sniffing test was applied to evaluate aroma. Coliform bacteria decreased during ripening but moulds and yeasts increased up to 104 cfu/g after 60 d, which defined the end of ripening period. Starter population remained constant during all ripening (109 cfu/g), while nonstarter lactic acid bacteria increased from ~102 to 104 cfu/g. Soluble nitrogen levels at pH 4.6, in trichloracetic acid (0.73 mol/l) and in phosphotungtic acid (0.009 mol/l) were 151, 67, and 10 g/1000 g of the total nitrogen, respectively, after 60 d of ripening, which are usual values for soft cheeses. Proteolytic patterns as measured by electrophoresis were also similar to those of standard cheeses, as well as the aroma of the products. Peptide profiles revealed that the areas of most peaks increased with ripening time. The proposed model showed to be suitable for the production of mini cheese specimens for laboratory testing of cultures and enzymes in similar conditions to their real environment in the food matrix.
publishDate 2007
dc.date.none.fl_str_mv 2007-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113998
Milesi, Maria Mercedes; Candioti, Mario César; Hynes, Erica Rut; Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening; Elsevier Science; LWT - Food Science and Technology; 40; 8; 8-2007; 1427-1433
0023-6438
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113998
identifier_str_mv Milesi, Maria Mercedes; Candioti, Mario César; Hynes, Erica Rut; Mini soft cheese as a simple model for biochemical studies on cheese-making and ripening; Elsevier Science; LWT - Food Science and Technology; 40; 8; 8-2007; 1427-1433
0023-6438
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2006.08.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614476166332416
score 13.070432