State-of-the-art review of optimization methods for short-term scheduling of batch processes
- Autores
- Mendez, Carlos Alberto; Cerda, Jaime; Grossmann, Ignacio E.; Harjunkoski, Iiro; Fahl, M.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There has been significant progress in the area of short-term scheduling of batch processes, including the solution of industrial-sized problems, inthe last 20 years. The main goal of this paper is to provide an up-to-date reviewof the state-of-the-art in this challenging area. Main features, strengths and limitations of existing modeling and optimization techniques as well as other available major solution methods are examined through this paper. We first present a general classification for scheduling problems of batch processes as well as for the corresponding optimization models. Subsequently, the modeling of representative optimization approaches for the different problem types are introduced in detail, focusing on both discrete and continuous time models. A comparison of effectiveness and efficiency of these models is given for two benchmarking examples from the literature. We also discuss two real-world applications of scheduling problems that cannot be readily accommodated using existing methods. For the sake of completeness, other alternative solution methods applied in the field of scheduling are also reviewed, followed by a discussion related to solving large-scale problems through rigorous optimization approaches. Finally,we list available academic and commercial software, and briefly address the issue of rescheduling capabilities of the various optimization approaches as well as important extensions that go beyond short-term batch scheduling.
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. University Of Carnegie Mellon; Estados Unidos
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados Unidos
Fil: Harjunkoski, Iiro. ABB Corporate Research Center; Alemania
Fil: Fahl, M.. ABB Corporate Research Center; Alemania - Materia
-
Short-Term Scheduling
Optimization Models
Batch Processes
Milp - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26403
Ver los metadatos del registro completo
id |
CONICETDig_5a7ff454068484f8355c3b39c0604416 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26403 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
State-of-the-art review of optimization methods for short-term scheduling of batch processesMendez, Carlos AlbertoCerda, JaimeGrossmann, Ignacio E.Harjunkoski, IiroFahl, M.Short-Term SchedulingOptimization ModelsBatch ProcessesMilphttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2There has been significant progress in the area of short-term scheduling of batch processes, including the solution of industrial-sized problems, inthe last 20 years. The main goal of this paper is to provide an up-to-date reviewof the state-of-the-art in this challenging area. Main features, strengths and limitations of existing modeling and optimization techniques as well as other available major solution methods are examined through this paper. We first present a general classification for scheduling problems of batch processes as well as for the corresponding optimization models. Subsequently, the modeling of representative optimization approaches for the different problem types are introduced in detail, focusing on both discrete and continuous time models. A comparison of effectiveness and efficiency of these models is given for two benchmarking examples from the literature. We also discuss two real-world applications of scheduling problems that cannot be readily accommodated using existing methods. For the sake of completeness, other alternative solution methods applied in the field of scheduling are also reviewed, followed by a discussion related to solving large-scale problems through rigorous optimization approaches. Finally,we list available academic and commercial software, and briefly address the issue of rescheduling capabilities of the various optimization approaches as well as important extensions that go beyond short-term batch scheduling.Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. University Of Carnegie Mellon; Estados UnidosFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados UnidosFil: Harjunkoski, Iiro. ABB Corporate Research Center; AlemaniaFil: Fahl, M.. ABB Corporate Research Center; AlemaniaElsevier2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26403Mendez, Carlos Alberto; Cerda, Jaime; Grossmann, Ignacio E.; Harjunkoski, Iiro; Fahl, M.; State-of-the-art review of optimization methods for short-term scheduling of batch processes; Elsevier; Computers and Chemical Engineering; 30; 6-7; 12-2006; 913-9460098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2006.02.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135406000287info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:27Zoai:ri.conicet.gov.ar:11336/26403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:27.812CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
title |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
spellingShingle |
State-of-the-art review of optimization methods for short-term scheduling of batch processes Mendez, Carlos Alberto Short-Term Scheduling Optimization Models Batch Processes Milp |
title_short |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
title_full |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
title_fullStr |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
title_full_unstemmed |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
title_sort |
State-of-the-art review of optimization methods for short-term scheduling of batch processes |
dc.creator.none.fl_str_mv |
Mendez, Carlos Alberto Cerda, Jaime Grossmann, Ignacio E. Harjunkoski, Iiro Fahl, M. |
author |
Mendez, Carlos Alberto |
author_facet |
Mendez, Carlos Alberto Cerda, Jaime Grossmann, Ignacio E. Harjunkoski, Iiro Fahl, M. |
author_role |
author |
author2 |
Cerda, Jaime Grossmann, Ignacio E. Harjunkoski, Iiro Fahl, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Short-Term Scheduling Optimization Models Batch Processes Milp |
topic |
Short-Term Scheduling Optimization Models Batch Processes Milp |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
There has been significant progress in the area of short-term scheduling of batch processes, including the solution of industrial-sized problems, inthe last 20 years. The main goal of this paper is to provide an up-to-date reviewof the state-of-the-art in this challenging area. Main features, strengths and limitations of existing modeling and optimization techniques as well as other available major solution methods are examined through this paper. We first present a general classification for scheduling problems of batch processes as well as for the corresponding optimization models. Subsequently, the modeling of representative optimization approaches for the different problem types are introduced in detail, focusing on both discrete and continuous time models. A comparison of effectiveness and efficiency of these models is given for two benchmarking examples from the literature. We also discuss two real-world applications of scheduling problems that cannot be readily accommodated using existing methods. For the sake of completeness, other alternative solution methods applied in the field of scheduling are also reviewed, followed by a discussion related to solving large-scale problems through rigorous optimization approaches. Finally,we list available academic and commercial software, and briefly address the issue of rescheduling capabilities of the various optimization approaches as well as important extensions that go beyond short-term batch scheduling. Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. University Of Carnegie Mellon; Estados Unidos Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon; Estados Unidos Fil: Harjunkoski, Iiro. ABB Corporate Research Center; Alemania Fil: Fahl, M.. ABB Corporate Research Center; Alemania |
description |
There has been significant progress in the area of short-term scheduling of batch processes, including the solution of industrial-sized problems, inthe last 20 years. The main goal of this paper is to provide an up-to-date reviewof the state-of-the-art in this challenging area. Main features, strengths and limitations of existing modeling and optimization techniques as well as other available major solution methods are examined through this paper. We first present a general classification for scheduling problems of batch processes as well as for the corresponding optimization models. Subsequently, the modeling of representative optimization approaches for the different problem types are introduced in detail, focusing on both discrete and continuous time models. A comparison of effectiveness and efficiency of these models is given for two benchmarking examples from the literature. We also discuss two real-world applications of scheduling problems that cannot be readily accommodated using existing methods. For the sake of completeness, other alternative solution methods applied in the field of scheduling are also reviewed, followed by a discussion related to solving large-scale problems through rigorous optimization approaches. Finally,we list available academic and commercial software, and briefly address the issue of rescheduling capabilities of the various optimization approaches as well as important extensions that go beyond short-term batch scheduling. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26403 Mendez, Carlos Alberto; Cerda, Jaime; Grossmann, Ignacio E.; Harjunkoski, Iiro; Fahl, M.; State-of-the-art review of optimization methods for short-term scheduling of batch processes; Elsevier; Computers and Chemical Engineering; 30; 6-7; 12-2006; 913-946 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26403 |
identifier_str_mv |
Mendez, Carlos Alberto; Cerda, Jaime; Grossmann, Ignacio E.; Harjunkoski, Iiro; Fahl, M.; State-of-the-art review of optimization methods for short-term scheduling of batch processes; Elsevier; Computers and Chemical Engineering; 30; 6-7; 12-2006; 913-946 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2006.02.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135406000287 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270158984314880 |
score |
13.13397 |