Representation theory of MV-algebras
- Autores
- Dubuc, Eduardo Julio; Poveda, Yuri A.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; Colombia - Materia
-
Mv-Algebra
Sheaf
Representation
Mcnauhton - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15070
Ver los metadatos del registro completo
id |
CONICETDig_c1ada0aa80c77dc3b6e2a33d4bd666cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15070 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Representation theory of MV-algebrasDubuc, Eduardo JulioPoveda, Yuri A.Mv-AlgebraSheafRepresentationMcnauhtonhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; ColombiaElsevier2010-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15070Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-10460168-0072enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168007209002176info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2009.12.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:45Zoai:ri.conicet.gov.ar:11336/15070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:45.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Representation theory of MV-algebras |
title |
Representation theory of MV-algebras |
spellingShingle |
Representation theory of MV-algebras Dubuc, Eduardo Julio Mv-Algebra Sheaf Representation Mcnauhton |
title_short |
Representation theory of MV-algebras |
title_full |
Representation theory of MV-algebras |
title_fullStr |
Representation theory of MV-algebras |
title_full_unstemmed |
Representation theory of MV-algebras |
title_sort |
Representation theory of MV-algebras |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo Julio Poveda, Yuri A. |
author |
Dubuc, Eduardo Julio |
author_facet |
Dubuc, Eduardo Julio Poveda, Yuri A. |
author_role |
author |
author2 |
Poveda, Yuri A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mv-Algebra Sheaf Representation Mcnauhton |
topic |
Mv-Algebra Sheaf Representation Mcnauhton |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely. Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; Colombia |
description |
In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15070 Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-1046 0168-0072 |
url |
http://hdl.handle.net/11336/15070 |
identifier_str_mv |
Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-1046 0168-0072 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168007209002176 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2009.12.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269364272758784 |
score |
13.13397 |