Representation theory of MV-algebras

Autores
Dubuc, Eduardo Julio; Poveda, Yuri A.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; Colombia
Materia
Mv-Algebra
Sheaf
Representation
Mcnauhton
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15070

id CONICETDig_c1ada0aa80c77dc3b6e2a33d4bd666cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/15070
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Representation theory of MV-algebrasDubuc, Eduardo JulioPoveda, Yuri A.Mv-AlgebraSheafRepresentationMcnauhtonhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; ColombiaElsevier2010-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15070Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-10460168-0072enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168007209002176info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2009.12.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:45Zoai:ri.conicet.gov.ar:11336/15070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:45.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Representation theory of MV-algebras
title Representation theory of MV-algebras
spellingShingle Representation theory of MV-algebras
Dubuc, Eduardo Julio
Mv-Algebra
Sheaf
Representation
Mcnauhton
title_short Representation theory of MV-algebras
title_full Representation theory of MV-algebras
title_fullStr Representation theory of MV-algebras
title_full_unstemmed Representation theory of MV-algebras
title_sort Representation theory of MV-algebras
dc.creator.none.fl_str_mv Dubuc, Eduardo Julio
Poveda, Yuri A.
author Dubuc, Eduardo Julio
author_facet Dubuc, Eduardo Julio
Poveda, Yuri A.
author_role author
author2 Poveda, Yuri A.
author2_role author
dc.subject.none.fl_str_mv Mv-Algebra
Sheaf
Representation
Mcnauhton
topic Mv-Algebra
Sheaf
Representation
Mcnauhton
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri A.. Universidad Tecnologica de Pereira; Colombia
description In this paper we develop a general representation theory for MV-algebras. We furnish the appropriate categorical background to study this problem. Our guide line is the theory of classifying topoi of coherent extensions of universal algebra theories. Our main result corresponds, in the case of MV-algebras and MV-chains, to the representation of commutative rings with unit as rings of global sections of sheaves of local rings. We prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of MV-chains on a compact topological space. This result is intimately related to McNaughton’s theorem, and we explain why our representation theorem can be viewed as a vast generalization of McNaughton’s theorem. In spite of the language used in this abstract, we have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and conversely.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15070
Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-1046
0168-0072
url http://hdl.handle.net/11336/15070
identifier_str_mv Dubuc, Eduardo Julio; Poveda, Yuri A.; Representation theory of MV-algebras; Elsevier; Annals Of Pure And Applied Logic; 161; 8; 15-1-2010; 1024-1046
0168-0072
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168007209002176
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2009.12.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269364272758784
score 13.13397