Separable MV-algebras and lattice-ordered groups
- Autores
- Marra, Vincenzo; Menni, Matías
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The theory of extensive categories determines in particular the notion of separable MV-algebra (equivalently, of separable unital lattice-ordered Abelian group). We establish the following structure theorem: An MV-algebra is separable if, and only if, it is a finite product of algebras of rational numbers—i.e., of subalgebras of the MV-algebra [0,1]∩Q" role="presentation">. Beyond its intrinsic algebraic interest, this research is motivated by the long-term programme of developing the algebraic geometry of the opposite of the category of MV-algebras, in analogy with the classical case of commutative K-algebras over a field K.
Fil: Marra, Vincenzo. Università degli Studi di Milano; Italia
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
Extensive categories
MV-algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238351
Ver los metadatos del registro completo
id |
CONICETDig_8f9e65e596dce3f32422358f9f2b4a92 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238351 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Separable MV-algebras and lattice-ordered groupsMarra, VincenzoMenni, MatíasExtensive categoriesMV-algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The theory of extensive categories determines in particular the notion of separable MV-algebra (equivalently, of separable unital lattice-ordered Abelian group). We establish the following structure theorem: An MV-algebra is separable if, and only if, it is a finite product of algebras of rational numbers—i.e., of subalgebras of the MV-algebra [0,1]∩Q" role="presentation">. Beyond its intrinsic algebraic interest, this research is motivated by the long-term programme of developing the algebraic geometry of the opposite of the category of MV-algebras, in analogy with the classical case of commutative K-algebras over a field K.Fil: Marra, Vincenzo. Università degli Studi di Milano; ItaliaFil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaAcademic Press Inc Elsevier Science2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238351Marra, Vincenzo; Menni, Matías; Separable MV-algebras and lattice-ordered groups; Academic Press Inc Elsevier Science; Journal of Algebra; 646; 5-2024; 66-990021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2024.01.037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:42Zoai:ri.conicet.gov.ar:11336/238351instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:42.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Separable MV-algebras and lattice-ordered groups |
title |
Separable MV-algebras and lattice-ordered groups |
spellingShingle |
Separable MV-algebras and lattice-ordered groups Marra, Vincenzo Extensive categories MV-algebras |
title_short |
Separable MV-algebras and lattice-ordered groups |
title_full |
Separable MV-algebras and lattice-ordered groups |
title_fullStr |
Separable MV-algebras and lattice-ordered groups |
title_full_unstemmed |
Separable MV-algebras and lattice-ordered groups |
title_sort |
Separable MV-algebras and lattice-ordered groups |
dc.creator.none.fl_str_mv |
Marra, Vincenzo Menni, Matías |
author |
Marra, Vincenzo |
author_facet |
Marra, Vincenzo Menni, Matías |
author_role |
author |
author2 |
Menni, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
Extensive categories MV-algebras |
topic |
Extensive categories MV-algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The theory of extensive categories determines in particular the notion of separable MV-algebra (equivalently, of separable unital lattice-ordered Abelian group). We establish the following structure theorem: An MV-algebra is separable if, and only if, it is a finite product of algebras of rational numbers—i.e., of subalgebras of the MV-algebra [0,1]∩Q" role="presentation">. Beyond its intrinsic algebraic interest, this research is motivated by the long-term programme of developing the algebraic geometry of the opposite of the category of MV-algebras, in analogy with the classical case of commutative K-algebras over a field K. Fil: Marra, Vincenzo. Università degli Studi di Milano; Italia Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
The theory of extensive categories determines in particular the notion of separable MV-algebra (equivalently, of separable unital lattice-ordered Abelian group). We establish the following structure theorem: An MV-algebra is separable if, and only if, it is a finite product of algebras of rational numbers—i.e., of subalgebras of the MV-algebra [0,1]∩Q" role="presentation">. Beyond its intrinsic algebraic interest, this research is motivated by the long-term programme of developing the algebraic geometry of the opposite of the category of MV-algebras, in analogy with the classical case of commutative K-algebras over a field K. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238351 Marra, Vincenzo; Menni, Matías; Separable MV-algebras and lattice-ordered groups; Academic Press Inc Elsevier Science; Journal of Algebra; 646; 5-2024; 66-99 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238351 |
identifier_str_mv |
Marra, Vincenzo; Menni, Matías; Separable MV-algebras and lattice-ordered groups; Academic Press Inc Elsevier Science; Journal of Algebra; 646; 5-2024; 66-99 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2024.01.037 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981076848345088 |
score |
12.48226 |