The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras

Autores
Dubuc, Eduardo Julio; Poveda, Yuri
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri. Universidad Tecnológica de Pereira; Colombia
Materia
CHINESE THEOREM
MCNAUGHTON THEOREM
MV-ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125791

id CONICETDig_eacc3d0f9bed15b094774736c5e62abe
oai_identifier_str oai:ri.conicet.gov.ar:11336/125791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebrasDubuc, Eduardo JulioPoveda, YuriCHINESE THEOREMMCNAUGHTON THEOREMMV-ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poveda, Yuri. Universidad Tecnológica de Pereira; ColombiaSpringer2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/125791Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-4850039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-011-9368-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-011-9368-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:42Zoai:ri.conicet.gov.ar:11336/125791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:43.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
title The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
spellingShingle The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
Dubuc, Eduardo Julio
CHINESE THEOREM
MCNAUGHTON THEOREM
MV-ALGEBRAS
title_short The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
title_full The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
title_fullStr The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
title_full_unstemmed The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
title_sort The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
dc.creator.none.fl_str_mv Dubuc, Eduardo Julio
Poveda, Yuri
author Dubuc, Eduardo Julio
author_facet Dubuc, Eduardo Julio
Poveda, Yuri
author_role author
author2 Poveda, Yuri
author2_role author
dc.subject.none.fl_str_mv CHINESE THEOREM
MCNAUGHTON THEOREM
MV-ALGEBRAS
topic CHINESE THEOREM
MCNAUGHTON THEOREM
MV-ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri. Universidad Tecnológica de Pereira; Colombia
description We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125791
Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-485
0039-3215
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125791
identifier_str_mv Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-485
0039-3215
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-011-9368-5
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-011-9368-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082943781437440
score 13.22299