The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras
- Autores
- Dubuc, Eduardo Julio; Poveda, Yuri
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poveda, Yuri. Universidad Tecnológica de Pereira; Colombia - Materia
-
CHINESE THEOREM
MCNAUGHTON THEOREM
MV-ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125791
Ver los metadatos del registro completo
id |
CONICETDig_eacc3d0f9bed15b094774736c5e62abe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125791 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebrasDubuc, Eduardo JulioPoveda, YuriCHINESE THEOREMMCNAUGHTON THEOREMMV-ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011).Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poveda, Yuri. Universidad Tecnológica de Pereira; ColombiaSpringer2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/125791Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-4850039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-011-9368-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-011-9368-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:42Zoai:ri.conicet.gov.ar:11336/125791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:43.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
title |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
spellingShingle |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras Dubuc, Eduardo Julio CHINESE THEOREM MCNAUGHTON THEOREM MV-ALGEBRAS |
title_short |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
title_full |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
title_fullStr |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
title_full_unstemmed |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
title_sort |
The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo Julio Poveda, Yuri |
author |
Dubuc, Eduardo Julio |
author_facet |
Dubuc, Eduardo Julio Poveda, Yuri |
author_role |
author |
author2 |
Poveda, Yuri |
author2_role |
author |
dc.subject.none.fl_str_mv |
CHINESE THEOREM MCNAUGHTON THEOREM MV-ALGEBRAS |
topic |
CHINESE THEOREM MCNAUGHTON THEOREM MV-ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011). Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Poveda, Yuri. Universidad Tecnológica de Pereira; Colombia |
description |
We show the intimate relationship between McNaughton Theorem and the Chinese Remaindner Theorem for MV-algebras. We develop a very short and simple proof of McNaughton Theorem. The arguing is elementary and right out of the definitions. We exhibit the theorem as just an instance of the Chinese theorem. Since the variety of MV-algebras is arithmetic, the Chinese theorem holds for MV-algebras. However, to make this paper self-contained and entirely elementary, we include a simple proof of this theorem inspired in Ferraioli and Lettieri (Math Logic Q 1:27-43, 2011). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125791 Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-485 0039-3215 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125791 |
identifier_str_mv |
Dubuc, Eduardo Julio; Poveda, Yuri; The Intimate Relationship Between the McNaughton and the Chinese Remainder Theorems for MV-algebras; Springer; Studia Logica; 101; 3; 6-2012; 483-485 0039-3215 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-011-9368-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-011-9368-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082943781437440 |
score |
13.22299 |