On the equivalence between MV-algebras and l-groups with strong unit
- Autores
- Dubuc, Eduardo Julio; Poveda, Y. A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Poveda, Y. A.. Universidad Tecnológica de Pereira; Colombia - Materia
-
Mv Algebras
L Groups
Good Sequences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19451
Ver los metadatos del registro completo
id |
CONICETDig_a6373ccb45d35828e1273254665fd66c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19451 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the equivalence between MV-algebras and l-groups with strong unitDubuc, Eduardo JulioPoveda, Y. A.Mv AlgebrasL GroupsGood Sequenceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Poveda, Y. A.. Universidad Tecnológica de Pereira; ColombiaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19451Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-8140039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9593-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-014-9593-9info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.1070info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:42Zoai:ri.conicet.gov.ar:11336/19451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:43.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the equivalence between MV-algebras and l-groups with strong unit |
title |
On the equivalence between MV-algebras and l-groups with strong unit |
spellingShingle |
On the equivalence between MV-algebras and l-groups with strong unit Dubuc, Eduardo Julio Mv Algebras L Groups Good Sequences |
title_short |
On the equivalence between MV-algebras and l-groups with strong unit |
title_full |
On the equivalence between MV-algebras and l-groups with strong unit |
title_fullStr |
On the equivalence between MV-algebras and l-groups with strong unit |
title_full_unstemmed |
On the equivalence between MV-algebras and l-groups with strong unit |
title_sort |
On the equivalence between MV-algebras and l-groups with strong unit |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo Julio Poveda, Y. A. |
author |
Dubuc, Eduardo Julio |
author_facet |
Dubuc, Eduardo Julio Poveda, Y. A. |
author_role |
author |
author2 |
Poveda, Y. A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mv Algebras L Groups Good Sequences |
topic |
Mv Algebras L Groups Good Sequences |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence. Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Poveda, Y. A.. Universidad Tecnológica de Pereira; Colombia |
description |
In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19451 Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-814 0039-3215 1572-8730 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19451 |
identifier_str_mv |
Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-814 0039-3215 1572-8730 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9593-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-014-9593-9 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.1070 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981373206331392 |
score |
12.48226 |