On the equivalence between MV-algebras and l-groups with strong unit

Autores
Dubuc, Eduardo Julio; Poveda, Y. A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Poveda, Y. A.. Universidad Tecnológica de Pereira; Colombia
Materia
Mv Algebras
L Groups
Good Sequences
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19451

id CONICETDig_a6373ccb45d35828e1273254665fd66c
oai_identifier_str oai:ri.conicet.gov.ar:11336/19451
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the equivalence between MV-algebras and l-groups with strong unitDubuc, Eduardo JulioPoveda, Y. A.Mv AlgebrasL GroupsGood Sequenceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Poveda, Y. A.. Universidad Tecnológica de Pereira; ColombiaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19451Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-8140039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9593-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-014-9593-9info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.1070info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:42Zoai:ri.conicet.gov.ar:11336/19451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:43.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the equivalence between MV-algebras and l-groups with strong unit
title On the equivalence between MV-algebras and l-groups with strong unit
spellingShingle On the equivalence between MV-algebras and l-groups with strong unit
Dubuc, Eduardo Julio
Mv Algebras
L Groups
Good Sequences
title_short On the equivalence between MV-algebras and l-groups with strong unit
title_full On the equivalence between MV-algebras and l-groups with strong unit
title_fullStr On the equivalence between MV-algebras and l-groups with strong unit
title_full_unstemmed On the equivalence between MV-algebras and l-groups with strong unit
title_sort On the equivalence between MV-algebras and l-groups with strong unit
dc.creator.none.fl_str_mv Dubuc, Eduardo Julio
Poveda, Y. A.
author Dubuc, Eduardo Julio
author_facet Dubuc, Eduardo Julio
Poveda, Y. A.
author_role author
author2 Poveda, Y. A.
author2_role author
dc.subject.none.fl_str_mv Mv Algebras
L Groups
Good Sequences
topic Mv Algebras
L Groups
Good Sequences
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Poveda, Y. A.. Universidad Tecnológica de Pereira; Colombia
description In “A new proof of the completeness of the Lukasiewicz axioms” (Trans Am Math Soc 88, 1959) Chang proved that any totally ordered MV -algebra A was isomorphic to the segment A ∼= Γ(A∗, u) of a totally ordered l-group with strong unit A∗. This was done by the simple intuitive idea of putting denumerable copies of A on top of each other (indexed by the integers). Moreover, he also show that any such group G can be recovered from its segment since G ∼= Γ(G, u) ∗, establishing an equivalence of categories. In “Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus” (J Funct Anal 65, 1986) Mundici extended this result to arbitrary MV -algebras and l-groups with strong unit. He takes the representation of A as a sub-direct product of chains Ai, and observes that A → i Gi where Gi = A∗ i . Then he let A∗ be the l-subgroup generated by A inside i Gi. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang’s result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product l-group i Gi, avoiding entirely the notion of good sequence.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19451
Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-814
0039-3215
1572-8730
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19451
identifier_str_mv Dubuc, Eduardo Julio; Poveda, Y. A.; On the equivalence between MV-algebras and l-groups with strong unit; Springer; Studia Logica; 103; 4; 8-2015; 807-814
0039-3215
1572-8730
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9593-9
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-014-9593-9
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.1070
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981373206331392
score 12.48226