Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearizat...
- Autores
- Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina - Materia
-
Second-order calibration
Fluorescence excitation–emission
Artificial neural networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248331
Ver los metadatos del registro completo
id |
CONICETDig_c1248b251ac62ff08b2304af98c80602 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248331 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearizationGarcia Reiriz, Alejandro GabrielDamiani, Patricia CeciliaOlivieri, Alejandro CesarSecond-order calibrationFluorescence excitation–emissionArtificial neural networkshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaElsevier Science2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248331Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-1990003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267007003182info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2007.02.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:58Zoai:ri.conicet.gov.ar:11336/248331instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:59.226CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
title |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
spellingShingle |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization Garcia Reiriz, Alejandro Gabriel Second-order calibration Fluorescence excitation–emission Artificial neural networks |
title_short |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
title_full |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
title_fullStr |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
title_full_unstemmed |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
title_sort |
Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization |
dc.creator.none.fl_str_mv |
Garcia Reiriz, Alejandro Gabriel Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author |
Garcia Reiriz, Alejandro Gabriel |
author_facet |
Garcia Reiriz, Alejandro Gabriel Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Second-order calibration Fluorescence excitation–emission Artificial neural networks |
topic |
Second-order calibration Fluorescence excitation–emission Artificial neural networks |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique. Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina |
description |
Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248331 Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-199 0003-2670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248331 |
identifier_str_mv |
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-199 0003-2670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267007003182 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2007.02.020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613415078723584 |
score |
13.070432 |