Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearizat...

Autores
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Materia
Second-order calibration
Fluorescence excitation–emission
Artificial neural networks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/248331

id CONICETDig_c1248b251ac62ff08b2304af98c80602
oai_identifier_str oai:ri.conicet.gov.ar:11336/248331
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearizationGarcia Reiriz, Alejandro GabrielDamiani, Patricia CeciliaOlivieri, Alejandro CesarSecond-order calibrationFluorescence excitation–emissionArtificial neural networkshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaElsevier Science2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248331Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-1990003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267007003182info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2007.02.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:58Zoai:ri.conicet.gov.ar:11336/248331instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:59.226CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
title Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
spellingShingle Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
Garcia Reiriz, Alejandro Gabriel
Second-order calibration
Fluorescence excitation–emission
Artificial neural networks
title_short Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
title_full Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
title_fullStr Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
title_full_unstemmed Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
title_sort Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization
dc.creator.none.fl_str_mv Garcia Reiriz, Alejandro Gabriel
Damiani, Patricia Cecilia
Olivieri, Alejandro Cesar
author Garcia Reiriz, Alejandro Gabriel
author_facet Garcia Reiriz, Alejandro Gabriel
Damiani, Patricia Cecilia
Olivieri, Alejandro Cesar
author_role author
author2 Damiani, Patricia Cecilia
Olivieri, Alejandro Cesar
author2_role author
author
dc.subject.none.fl_str_mv Second-order calibration
Fluorescence excitation–emission
Artificial neural networks
topic Second-order calibration
Fluorescence excitation–emission
Artificial neural networks
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
description Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.
publishDate 2007
dc.date.none.fl_str_mv 2007-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/248331
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-199
0003-2670
CONICET Digital
CONICET
url http://hdl.handle.net/11336/248331
identifier_str_mv Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-199
0003-2670
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267007003182
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2007.02.020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613415078723584
score 13.070432