Learning Mixed Strategies in Quantum Games with Imperfect Information

Autores
Silva, Agustin; Zabaleta, Omar Gustavo; Arizmendi, Constancio Miguel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The quantization of games expand the players strategy space, allowing the emergence of more equilibriums. However, finding these equilibriums is difficult, especially if players are allowed to use mixed strategies. The size of the exploration space expands so much for quantum games that makes far harder to find the player’s best strategy. In this work, we propose a method to learn and visualize mixed quantum strategies and compare them with their classical counterpart. In our model, players do not know in advance which game they are playing (pay-off matrix) neither the action selected nor the reward obtained by their competitors at each step, they only learn from an individual feedback reward signal. In addition, we study both the influence of entanglement and noise on the performance of various quantum games.
Fil: Silva, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Zabaleta, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Arizmendi, Constancio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Materia
GAME THEORY
MACHINE LEARNING
QUANTUM COMPUTING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211451

id CONICETDig_bfcef44d0a5860e745295776d5eae8ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/211451
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Learning Mixed Strategies in Quantum Games with Imperfect InformationSilva, AgustinZabaleta, Omar GustavoArizmendi, Constancio MiguelGAME THEORYMACHINE LEARNINGQUANTUM COMPUTINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The quantization of games expand the players strategy space, allowing the emergence of more equilibriums. However, finding these equilibriums is difficult, especially if players are allowed to use mixed strategies. The size of the exploration space expands so much for quantum games that makes far harder to find the player’s best strategy. In this work, we propose a method to learn and visualize mixed quantum strategies and compare them with their classical counterpart. In our model, players do not know in advance which game they are playing (pay-off matrix) neither the action selected nor the reward obtained by their competitors at each step, they only learn from an individual feedback reward signal. In addition, we study both the influence of entanglement and noise on the performance of various quantum games.Fil: Silva, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Zabaleta, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Arizmendi, Constancio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaMDPI2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211451Silva, Agustin; Zabaleta, Omar Gustavo; Arizmendi, Constancio Miguel; Learning Mixed Strategies in Quantum Games with Imperfect Information; MDPI; Quantum Reports; 4; 4; 10-2022; 462-4752624-960XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/4/4/33info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum4040033info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:50Zoai:ri.conicet.gov.ar:11336/211451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:51.238CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Learning Mixed Strategies in Quantum Games with Imperfect Information
title Learning Mixed Strategies in Quantum Games with Imperfect Information
spellingShingle Learning Mixed Strategies in Quantum Games with Imperfect Information
Silva, Agustin
GAME THEORY
MACHINE LEARNING
QUANTUM COMPUTING
title_short Learning Mixed Strategies in Quantum Games with Imperfect Information
title_full Learning Mixed Strategies in Quantum Games with Imperfect Information
title_fullStr Learning Mixed Strategies in Quantum Games with Imperfect Information
title_full_unstemmed Learning Mixed Strategies in Quantum Games with Imperfect Information
title_sort Learning Mixed Strategies in Quantum Games with Imperfect Information
dc.creator.none.fl_str_mv Silva, Agustin
Zabaleta, Omar Gustavo
Arizmendi, Constancio Miguel
author Silva, Agustin
author_facet Silva, Agustin
Zabaleta, Omar Gustavo
Arizmendi, Constancio Miguel
author_role author
author2 Zabaleta, Omar Gustavo
Arizmendi, Constancio Miguel
author2_role author
author
dc.subject.none.fl_str_mv GAME THEORY
MACHINE LEARNING
QUANTUM COMPUTING
topic GAME THEORY
MACHINE LEARNING
QUANTUM COMPUTING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The quantization of games expand the players strategy space, allowing the emergence of more equilibriums. However, finding these equilibriums is difficult, especially if players are allowed to use mixed strategies. The size of the exploration space expands so much for quantum games that makes far harder to find the player’s best strategy. In this work, we propose a method to learn and visualize mixed quantum strategies and compare them with their classical counterpart. In our model, players do not know in advance which game they are playing (pay-off matrix) neither the action selected nor the reward obtained by their competitors at each step, they only learn from an individual feedback reward signal. In addition, we study both the influence of entanglement and noise on the performance of various quantum games.
Fil: Silva, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Zabaleta, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Arizmendi, Constancio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
description The quantization of games expand the players strategy space, allowing the emergence of more equilibriums. However, finding these equilibriums is difficult, especially if players are allowed to use mixed strategies. The size of the exploration space expands so much for quantum games that makes far harder to find the player’s best strategy. In this work, we propose a method to learn and visualize mixed quantum strategies and compare them with their classical counterpart. In our model, players do not know in advance which game they are playing (pay-off matrix) neither the action selected nor the reward obtained by their competitors at each step, they only learn from an individual feedback reward signal. In addition, we study both the influence of entanglement and noise on the performance of various quantum games.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211451
Silva, Agustin; Zabaleta, Omar Gustavo; Arizmendi, Constancio Miguel; Learning Mixed Strategies in Quantum Games with Imperfect Information; MDPI; Quantum Reports; 4; 4; 10-2022; 462-475
2624-960X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211451
identifier_str_mv Silva, Agustin; Zabaleta, Omar Gustavo; Arizmendi, Constancio Miguel; Learning Mixed Strategies in Quantum Games with Imperfect Information; MDPI; Quantum Reports; 4; 4; 10-2022; 462-475
2624-960X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2624-960X/4/4/33
info:eu-repo/semantics/altIdentifier/doi/10.3390/quantum4040033
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269120737837056
score 13.13397