Exploring quantum localization with machine learning
- Autores
- Montes, Javier; Ermann, Leonardo; Rivas, Alejandro Mariano Fidel; Borondo, Florentino; Carlo, Gabriel Gustavo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization. Our approach integrates a versatile quantum phase space parametrization leading to a custom ”quantum” NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit, a long standing question in the quantum scattering field. Moreover, the physical meaning built in the model allows for the interpretation of the learning process.
Fil: Montes, Javier. Universidad Autónoma de Madrid; España
Fil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Borondo, Florentino. Universidad Autónoma de Madrid; España
Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina - Materia
-
Neural network
Quantum Localization
Machine Learning
Quantum chaos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239114
Ver los metadatos del registro completo
id |
CONICETDig_b5f08be78a1d2872a8a37822bd6a4ba5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239114 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring quantum localization with machine learningMontes, JavierErmann, LeonardoRivas, Alejandro Mariano FidelBorondo, FlorentinoCarlo, Gabriel GustavoNeural networkQuantum LocalizationMachine LearningQuantum chaoshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization. Our approach integrates a versatile quantum phase space parametrization leading to a custom ”quantum” NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit, a long standing question in the quantum scattering field. Moreover, the physical meaning built in the model allows for the interpretation of the learning process.Fil: Montes, Javier. Universidad Autónoma de Madrid; EspañaFil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Borondo, Florentino. Universidad Autónoma de Madrid; EspañaFil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaCornell University2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239114Montes, Javier; Ermann, Leonardo; Rivas, Alejandro Mariano Fidel; Borondo, Florentino; Carlo, Gabriel Gustavo; Exploring quantum localization with machine learning; Cornell University; Arxiv; 6-2024; 1-152331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2406.00363info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2406.00363info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:47Zoai:ri.conicet.gov.ar:11336/239114instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:48.23CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring quantum localization with machine learning |
title |
Exploring quantum localization with machine learning |
spellingShingle |
Exploring quantum localization with machine learning Montes, Javier Neural network Quantum Localization Machine Learning Quantum chaos |
title_short |
Exploring quantum localization with machine learning |
title_full |
Exploring quantum localization with machine learning |
title_fullStr |
Exploring quantum localization with machine learning |
title_full_unstemmed |
Exploring quantum localization with machine learning |
title_sort |
Exploring quantum localization with machine learning |
dc.creator.none.fl_str_mv |
Montes, Javier Ermann, Leonardo Rivas, Alejandro Mariano Fidel Borondo, Florentino Carlo, Gabriel Gustavo |
author |
Montes, Javier |
author_facet |
Montes, Javier Ermann, Leonardo Rivas, Alejandro Mariano Fidel Borondo, Florentino Carlo, Gabriel Gustavo |
author_role |
author |
author2 |
Ermann, Leonardo Rivas, Alejandro Mariano Fidel Borondo, Florentino Carlo, Gabriel Gustavo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Neural network Quantum Localization Machine Learning Quantum chaos |
topic |
Neural network Quantum Localization Machine Learning Quantum chaos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization. Our approach integrates a versatile quantum phase space parametrization leading to a custom ”quantum” NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit, a long standing question in the quantum scattering field. Moreover, the physical meaning built in the model allows for the interpretation of the learning process. Fil: Montes, Javier. Universidad Autónoma de Madrid; España Fil: Ermann, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina Fil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina Fil: Borondo, Florentino. Universidad Autónoma de Madrid; España Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina |
description |
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization. Our approach integrates a versatile quantum phase space parametrization leading to a custom ”quantum” NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit, a long standing question in the quantum scattering field. Moreover, the physical meaning built in the model allows for the interpretation of the learning process. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239114 Montes, Javier; Ermann, Leonardo; Rivas, Alejandro Mariano Fidel; Borondo, Florentino; Carlo, Gabriel Gustavo; Exploring quantum localization with machine learning; Cornell University; Arxiv; 6-2024; 1-15 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239114 |
identifier_str_mv |
Montes, Javier; Ermann, Leonardo; Rivas, Alejandro Mariano Fidel; Borondo, Florentino; Carlo, Gabriel Gustavo; Exploring quantum localization with machine learning; Cornell University; Arxiv; 6-2024; 1-15 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2406.00363 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2406.00363 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980972693291008 |
score |
12.993085 |