Taking advantage of noise in quantum reservoir computing
- Autores
- Domingo, L.; Carlo, Gabriel Gustavo; Borondo, F.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The biggest challenge that quantum computing and quantum machine learning are currently facingis the presence of noise in quantum devices. As a result, big efforts have been put into correctingor mitigating the induced errors. But, can these two fields benefit from noise? Surprisingly, wedemonstrate that under some circumstances, quantum noise can be used to improve the performanceof quantum reservoir computing, a prominent and recent quantum machine learning algorithm.Our results show that the amplitude damping noise can be beneficial to machine learning, whilethe depolarizing and phase damping noises should be prioritized for correction. This critical resultsheds new light into the physical mechanisms underlying quantum devices, providing solid practicalprescriptions for a successful implementation of quantum information processing in nowadayshardware.
Fil: Domingo, L.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; España. Universidad Politécnica de Madrid; España
Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Borondo, F.. Universidad Autónoma de Madrid; España - Materia
-
Reservoir Computing
Quantum Computation
Quantum Machine Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232961
Ver los metadatos del registro completo
id |
CONICETDig_58fb7a348d591c65c208119b48afc40e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232961 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Taking advantage of noise in quantum reservoir computingDomingo, L.Carlo, Gabriel GustavoBorondo, F.Reservoir ComputingQuantum ComputationQuantum Machine Learninghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The biggest challenge that quantum computing and quantum machine learning are currently facingis the presence of noise in quantum devices. As a result, big efforts have been put into correctingor mitigating the induced errors. But, can these two fields benefit from noise? Surprisingly, wedemonstrate that under some circumstances, quantum noise can be used to improve the performanceof quantum reservoir computing, a prominent and recent quantum machine learning algorithm.Our results show that the amplitude damping noise can be beneficial to machine learning, whilethe depolarizing and phase damping noises should be prioritized for correction. This critical resultsheds new light into the physical mechanisms underlying quantum devices, providing solid practicalprescriptions for a successful implementation of quantum information processing in nowadayshardware.Fil: Domingo, L.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; España. Universidad Politécnica de Madrid; EspañaFil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Borondo, F.. Universidad Autónoma de Madrid; EspañaNature2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232961Domingo, L.; Carlo, Gabriel Gustavo; Borondo, F.; Taking advantage of noise in quantum reservoir computing; Nature; Scientific Reports; 13; 1; 4-2023; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-35461-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:43Zoai:ri.conicet.gov.ar:11336/232961instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:44.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Taking advantage of noise in quantum reservoir computing |
title |
Taking advantage of noise in quantum reservoir computing |
spellingShingle |
Taking advantage of noise in quantum reservoir computing Domingo, L. Reservoir Computing Quantum Computation Quantum Machine Learning |
title_short |
Taking advantage of noise in quantum reservoir computing |
title_full |
Taking advantage of noise in quantum reservoir computing |
title_fullStr |
Taking advantage of noise in quantum reservoir computing |
title_full_unstemmed |
Taking advantage of noise in quantum reservoir computing |
title_sort |
Taking advantage of noise in quantum reservoir computing |
dc.creator.none.fl_str_mv |
Domingo, L. Carlo, Gabriel Gustavo Borondo, F. |
author |
Domingo, L. |
author_facet |
Domingo, L. Carlo, Gabriel Gustavo Borondo, F. |
author_role |
author |
author2 |
Carlo, Gabriel Gustavo Borondo, F. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Reservoir Computing Quantum Computation Quantum Machine Learning |
topic |
Reservoir Computing Quantum Computation Quantum Machine Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The biggest challenge that quantum computing and quantum machine learning are currently facingis the presence of noise in quantum devices. As a result, big efforts have been put into correctingor mitigating the induced errors. But, can these two fields benefit from noise? Surprisingly, wedemonstrate that under some circumstances, quantum noise can be used to improve the performanceof quantum reservoir computing, a prominent and recent quantum machine learning algorithm.Our results show that the amplitude damping noise can be beneficial to machine learning, whilethe depolarizing and phase damping noises should be prioritized for correction. This critical resultsheds new light into the physical mechanisms underlying quantum devices, providing solid practicalprescriptions for a successful implementation of quantum information processing in nowadayshardware. Fil: Domingo, L.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; España. Universidad Politécnica de Madrid; España Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina Fil: Borondo, F.. Universidad Autónoma de Madrid; España |
description |
The biggest challenge that quantum computing and quantum machine learning are currently facingis the presence of noise in quantum devices. As a result, big efforts have been put into correctingor mitigating the induced errors. But, can these two fields benefit from noise? Surprisingly, wedemonstrate that under some circumstances, quantum noise can be used to improve the performanceof quantum reservoir computing, a prominent and recent quantum machine learning algorithm.Our results show that the amplitude damping noise can be beneficial to machine learning, whilethe depolarizing and phase damping noises should be prioritized for correction. This critical resultsheds new light into the physical mechanisms underlying quantum devices, providing solid practicalprescriptions for a successful implementation of quantum information processing in nowadayshardware. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232961 Domingo, L.; Carlo, Gabriel Gustavo; Borondo, F.; Taking advantage of noise in quantum reservoir computing; Nature; Scientific Reports; 13; 1; 4-2023; 1-9 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232961 |
identifier_str_mv |
Domingo, L.; Carlo, Gabriel Gustavo; Borondo, F.; Taking advantage of noise in quantum reservoir computing; Nature; Scientific Reports; 13; 1; 4-2023; 1-9 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-35461-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268748441976832 |
score |
13.13397 |