k-tuple colorings of the Cartesian product of graphs
- Autores
- Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento. Instituto de Industria; Argentina
Fil: Torres, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia. Centre National de la Recherche Scientifique; Francia - Materia
-
CARTESIAN PRODUCT OF GRAPHS
CAYLEY GRAPHS
HOM-IDEMPOTENT GRAPHS
K-TUPLE COLORINGS
KNESER GRAPHS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97048
Ver los metadatos del registro completo
id |
CONICETDig_bfad3d8e6e214abfcfb99dc1ae6bff86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97048 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
k-tuple colorings of the Cartesian product of graphsBonomo, FlaviaKoch, Ivo ValerioTorres, PabloValencia Pabon, MarioCARTESIAN PRODUCT OF GRAPHSCAYLEY GRAPHSHOM-IDEMPOTENT GRAPHSK-TUPLE COLORINGSKNESER GRAPHShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento. Instituto de Industria; ArgentinaFil: Torres, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia. Centre National de la Recherche Scientifique; FranciaElsevier Science2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97048Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-1820166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2017.02.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17300872info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:24Zoai:ri.conicet.gov.ar:11336/97048instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:24.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
k-tuple colorings of the Cartesian product of graphs |
title |
k-tuple colorings of the Cartesian product of graphs |
spellingShingle |
k-tuple colorings of the Cartesian product of graphs Bonomo, Flavia CARTESIAN PRODUCT OF GRAPHS CAYLEY GRAPHS HOM-IDEMPOTENT GRAPHS K-TUPLE COLORINGS KNESER GRAPHS |
title_short |
k-tuple colorings of the Cartesian product of graphs |
title_full |
k-tuple colorings of the Cartesian product of graphs |
title_fullStr |
k-tuple colorings of the Cartesian product of graphs |
title_full_unstemmed |
k-tuple colorings of the Cartesian product of graphs |
title_sort |
k-tuple colorings of the Cartesian product of graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Koch, Ivo Valerio Torres, Pablo Valencia Pabon, Mario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Koch, Ivo Valerio Torres, Pablo Valencia Pabon, Mario |
author_role |
author |
author2 |
Koch, Ivo Valerio Torres, Pablo Valencia Pabon, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CARTESIAN PRODUCT OF GRAPHS CAYLEY GRAPHS HOM-IDEMPOTENT GRAPHS K-TUPLE COLORINGS KNESER GRAPHS |
topic |
CARTESIAN PRODUCT OF GRAPHS CAYLEY GRAPHS HOM-IDEMPOTENT GRAPHS K-TUPLE COLORINGS KNESER GRAPHS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento. Instituto de Industria; Argentina Fil: Torres, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia. Centre National de la Recherche Scientifique; Francia |
description |
A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97048 Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-182 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97048 |
identifier_str_mv |
Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-182 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2017.02.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17300872 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083371141169152 |
score |
13.22299 |