On the diameter of Schrijver graphs

Autores
Pastine, Adrián Gabriel; Torres, Pablo Daniel; Valencia Pabon, Mario
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
For k ≥ 1 and n ≥ 2k, the well known Kneser graph KG(n, k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. Schrijver constructed a vertex-critical subgraph SG(n, k) of KG(n, k) with the same chromatic number. In this paper, we compute the diameter of the graph SG(2k + r,k) with r ≥ 1. We obtain that the diameter of SG(2k + r, k) is equal to 2 if r ≥ 2k - 2; 3 if k≥ - 2 ≤ r ≤ 2k - 3; k if r = 1; and for 2 ≤ r ≤ k - 3, we obtain that the diameter of SG(2k + r, k) is at most equal to k - r + 1.
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Valencia Pabon, Mario. Universite Sorbonne Paris Nord; Francia
XI Latin and American Algorithms, Graphs and Optimization Symposium.
Sao Paulo
Brasil
University of Sao Paulo
Materia
SCHRIJVER GRAPHS
GRAPH DIAMETER
KNESER GRAPHS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222363

id CONICETDig_4cecc55a6b85818782581948fd2a543a
oai_identifier_str oai:ri.conicet.gov.ar:11336/222363
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the diameter of Schrijver graphsPastine, Adrián GabrielTorres, Pablo DanielValencia Pabon, MarioSCHRIJVER GRAPHSGRAPH DIAMETERKNESER GRAPHShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For k ≥ 1 and n ≥ 2k, the well known Kneser graph KG(n, k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. Schrijver constructed a vertex-critical subgraph SG(n, k) of KG(n, k) with the same chromatic number. In this paper, we compute the diameter of the graph SG(2k + r,k) with r ≥ 1. We obtain that the diameter of SG(2k + r, k) is equal to 2 if r ≥ 2k - 2; 3 if k≥ - 2 ≤ r ≤ 2k - 3; k if r = 1; and for 2 ≤ r ≤ k - 3, we obtain that the diameter of SG(2k + r, k) is at most equal to k - r + 1.Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Valencia Pabon, Mario. Universite Sorbonne Paris Nord; FranciaXI Latin and American Algorithms, Graphs and Optimization Symposium.Sao PauloBrasilUniversity of Sao PauloElsevier2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222363On the diameter of Schrijver graphs; XI Latin and American Algorithms, Graphs and Optimization Symposium.; Sao Paulo; Brasil; 2021; 266-27418770509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877050921021724info:eu-repo/semantics/altIdentifier/doi/10.1016/j.procs.2021.11.033Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:34Zoai:ri.conicet.gov.ar:11336/222363instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:34.418CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the diameter of Schrijver graphs
title On the diameter of Schrijver graphs
spellingShingle On the diameter of Schrijver graphs
Pastine, Adrián Gabriel
SCHRIJVER GRAPHS
GRAPH DIAMETER
KNESER GRAPHS
title_short On the diameter of Schrijver graphs
title_full On the diameter of Schrijver graphs
title_fullStr On the diameter of Schrijver graphs
title_full_unstemmed On the diameter of Schrijver graphs
title_sort On the diameter of Schrijver graphs
dc.creator.none.fl_str_mv Pastine, Adrián Gabriel
Torres, Pablo Daniel
Valencia Pabon, Mario
author Pastine, Adrián Gabriel
author_facet Pastine, Adrián Gabriel
Torres, Pablo Daniel
Valencia Pabon, Mario
author_role author
author2 Torres, Pablo Daniel
Valencia Pabon, Mario
author2_role author
author
dc.subject.none.fl_str_mv SCHRIJVER GRAPHS
GRAPH DIAMETER
KNESER GRAPHS
topic SCHRIJVER GRAPHS
GRAPH DIAMETER
KNESER GRAPHS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For k ≥ 1 and n ≥ 2k, the well known Kneser graph KG(n, k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. Schrijver constructed a vertex-critical subgraph SG(n, k) of KG(n, k) with the same chromatic number. In this paper, we compute the diameter of the graph SG(2k + r,k) with r ≥ 1. We obtain that the diameter of SG(2k + r, k) is equal to 2 if r ≥ 2k - 2; 3 if k≥ - 2 ≤ r ≤ 2k - 3; k if r = 1; and for 2 ≤ r ≤ k - 3, we obtain that the diameter of SG(2k + r, k) is at most equal to k - r + 1.
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Valencia Pabon, Mario. Universite Sorbonne Paris Nord; Francia
XI Latin and American Algorithms, Graphs and Optimization Symposium.
Sao Paulo
Brasil
University of Sao Paulo
description For k ≥ 1 and n ≥ 2k, the well known Kneser graph KG(n, k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. Schrijver constructed a vertex-critical subgraph SG(n, k) of KG(n, k) with the same chromatic number. In this paper, we compute the diameter of the graph SG(2k + r,k) with r ≥ 1. We obtain that the diameter of SG(2k + r, k) is equal to 2 if r ≥ 2k - 2; 3 if k≥ - 2 ≤ r ≤ 2k - 3; k if r = 1; and for 2 ≤ r ≤ k - 3, we obtain that the diameter of SG(2k + r, k) is at most equal to k - r + 1.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222363
On the diameter of Schrijver graphs; XI Latin and American Algorithms, Graphs and Optimization Symposium.; Sao Paulo; Brasil; 2021; 266-274
18770509
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222363
identifier_str_mv On the diameter of Schrijver graphs; XI Latin and American Algorithms, Graphs and Optimization Symposium.; Sao Paulo; Brasil; 2021; 266-274
18770509
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877050921021724
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.procs.2021.11.033
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980156867608576
score 12.993085