Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF
- Autores
- Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; Tagliazucchi, Enzo Rodolfo; Kringelbach, Morten L.; Cofré, Rodrigo; Deco, Gustavo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.
Fil: Herzog, Rubén. Paris Brain Institute; Francia
Fil: Mediano, Pedro A. M.. University of Cambridge; Reino Unido
Fil: Rosas, Fernando E.. University of Oxford; Reino Unido
Fil: Luppi, Andrea I.. University of Cambridge; Reino Unido
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
Fil: Cofré, Rodrigo. Universite Paris-saclay (universite Paris-saclay);
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España - Materia
-
Whole-brain model
Mean-field model
Neuroimaging
Local Inhibition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251968
Ver los metadatos del registro completo
id |
CONICETDig_bf60aa5e52f7bc8a3fb467b4dfaa30c1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251968 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMFHerzog, RubénMediano, Pedro A. M.Rosas, Fernando E.Luppi, Andrea I.Sanz Perl Hernandez, YonatanTagliazucchi, Enzo RodolfoKringelbach, Morten L.Cofré, RodrigoDeco, GustavoWhole-brain modelMean-field modelNeuroimagingLocal Inhibitionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.Fil: Herzog, Rubén. Paris Brain Institute; FranciaFil: Mediano, Pedro A. M.. University of Cambridge; Reino UnidoFil: Rosas, Fernando E.. University of Oxford; Reino UnidoFil: Luppi, Andrea I.. University of Cambridge; Reino UnidoFil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; ChileFil: Kringelbach, Morten L.. University of Oxford; Reino UnidoFil: Cofré, Rodrigo. Universite Paris-saclay (universite Paris-saclay);Fil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaMIT Press2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251968Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; et al.; Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF; MIT Press; Network Neuroscience; 8; 4; 12-2024; 1590-16122472-1751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/8/4/1590/123888/Neural-mass-modeling-for-the-masses-Democratizinginfo:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00410info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:58Zoai:ri.conicet.gov.ar:11336/251968instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:59.235CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
title |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
spellingShingle |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF Herzog, Rubén Whole-brain model Mean-field model Neuroimaging Local Inhibition |
title_short |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
title_full |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
title_fullStr |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
title_full_unstemmed |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
title_sort |
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF |
dc.creator.none.fl_str_mv |
Herzog, Rubén Mediano, Pedro A. M. Rosas, Fernando E. Luppi, Andrea I. Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo Kringelbach, Morten L. Cofré, Rodrigo Deco, Gustavo |
author |
Herzog, Rubén |
author_facet |
Herzog, Rubén Mediano, Pedro A. M. Rosas, Fernando E. Luppi, Andrea I. Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo Kringelbach, Morten L. Cofré, Rodrigo Deco, Gustavo |
author_role |
author |
author2 |
Mediano, Pedro A. M. Rosas, Fernando E. Luppi, Andrea I. Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo Kringelbach, Morten L. Cofré, Rodrigo Deco, Gustavo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Whole-brain model Mean-field model Neuroimaging Local Inhibition |
topic |
Whole-brain model Mean-field model Neuroimaging Local Inhibition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings. Fil: Herzog, Rubén. Paris Brain Institute; Francia Fil: Mediano, Pedro A. M.. University of Cambridge; Reino Unido Fil: Rosas, Fernando E.. University of Oxford; Reino Unido Fil: Luppi, Andrea I.. University of Cambridge; Reino Unido Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido Fil: Cofré, Rodrigo. Universite Paris-saclay (universite Paris-saclay); Fil: Deco, Gustavo. Universitat Pompeu Fabra; España |
description |
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251968 Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; et al.; Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF; MIT Press; Network Neuroscience; 8; 4; 12-2024; 1590-1612 2472-1751 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251968 |
identifier_str_mv |
Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; et al.; Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF; MIT Press; Network Neuroscience; 8; 4; 12-2024; 1590-1612 2472-1751 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/8/4/1590/123888/Neural-mass-modeling-for-the-masses-Democratizing info:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00410 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MIT Press |
publisher.none.fl_str_mv |
MIT Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613436796829696 |
score |
13.070432 |