Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling

Autores
Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; Cruzat, Josephine; Tagliazucchi, Enzo Rodolfo; Brzezicka, Aneta; Orio, Patricio; Kowalczyk Grębska, Natalia; Ibañez, Agustin Mariano
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; Chile
Fil: Medel, Vicente. Universidad Adolfo Ibañez; Chile
Fil: Orellana, Sebastián. Universidad de Valparaíso; Chile
Fil: Rodiño, Julio. Universidad de Valparaíso; Chile
Fil: Lehue, Fernando. Universidad de Valparaíso; Chile
Fil: Cruzat, Josephine. Universidad Adolfo Ibañez; Chile
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brzezicka, Aneta. No especifíca;
Fil: Orio, Patricio. Universidad de Valparaíso; Chile
Fil: Kowalczyk Grębska, Natalia. No especifíca;
Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
NEUROSCIENCE
NEUROIMAGING
MODELING
EXPERTISE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265738

id CONICETDig_b50cc103e15102a9b8a349e8e72b573f
oai_identifier_str oai:ri.conicet.gov.ar:11336/265738
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modelingCoronel Oliveros, CarlosMedel, VicenteOrellana, SebastiánRodiño, JulioLehue, FernandoCruzat, JosephineTagliazucchi, Enzo RodolfoBrzezicka, AnetaOrio, PatricioKowalczyk Grębska, NataliaIbañez, Agustin MarianoNEUROSCIENCENEUROIMAGINGMODELINGEXPERTISEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; ChileFil: Medel, Vicente. Universidad Adolfo Ibañez; ChileFil: Orellana, Sebastián. Universidad de Valparaíso; ChileFil: Rodiño, Julio. Universidad de Valparaíso; ChileFil: Lehue, Fernando. Universidad de Valparaíso; ChileFil: Cruzat, Josephine. Universidad Adolfo Ibañez; ChileFil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Brzezicka, Aneta. No especifíca;Fil: Orio, Patricio. Universidad de Valparaíso; ChileFil: Kowalczyk Grębska, Natalia. No especifíca;Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265738Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-181053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811924001289info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2024.120633info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:36Zoai:ri.conicet.gov.ar:11336/265738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:36.752CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
title Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
spellingShingle Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
Coronel Oliveros, Carlos
NEUROSCIENCE
NEUROIMAGING
MODELING
EXPERTISE
title_short Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
title_full Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
title_fullStr Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
title_full_unstemmed Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
title_sort Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
dc.creator.none.fl_str_mv Coronel Oliveros, Carlos
Medel, Vicente
Orellana, Sebastián
Rodiño, Julio
Lehue, Fernando
Cruzat, Josephine
Tagliazucchi, Enzo Rodolfo
Brzezicka, Aneta
Orio, Patricio
Kowalczyk Grębska, Natalia
Ibañez, Agustin Mariano
author Coronel Oliveros, Carlos
author_facet Coronel Oliveros, Carlos
Medel, Vicente
Orellana, Sebastián
Rodiño, Julio
Lehue, Fernando
Cruzat, Josephine
Tagliazucchi, Enzo Rodolfo
Brzezicka, Aneta
Orio, Patricio
Kowalczyk Grębska, Natalia
Ibañez, Agustin Mariano
author_role author
author2 Medel, Vicente
Orellana, Sebastián
Rodiño, Julio
Lehue, Fernando
Cruzat, Josephine
Tagliazucchi, Enzo Rodolfo
Brzezicka, Aneta
Orio, Patricio
Kowalczyk Grębska, Natalia
Ibañez, Agustin Mariano
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv NEUROSCIENCE
NEUROIMAGING
MODELING
EXPERTISE
topic NEUROSCIENCE
NEUROIMAGING
MODELING
EXPERTISE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; Chile
Fil: Medel, Vicente. Universidad Adolfo Ibañez; Chile
Fil: Orellana, Sebastián. Universidad de Valparaíso; Chile
Fil: Rodiño, Julio. Universidad de Valparaíso; Chile
Fil: Lehue, Fernando. Universidad de Valparaíso; Chile
Fil: Cruzat, Josephine. Universidad Adolfo Ibañez; Chile
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brzezicka, Aneta. No especifíca;
Fil: Orio, Patricio. Universidad de Valparaíso; Chile
Fil: Kowalczyk Grębska, Natalia. No especifíca;
Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265738
Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-18
1053-8119
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265738
identifier_str_mv Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-18
1053-8119
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811924001289
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2024.120633
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269412495720448
score 13.13397