Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
- Autores
- Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; Cruzat, Josephine; Tagliazucchi, Enzo Rodolfo; Brzezicka, Aneta; Orio, Patricio; Kowalczyk Grębska, Natalia; Ibañez, Agustin Mariano
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; Chile
Fil: Medel, Vicente. Universidad Adolfo Ibañez; Chile
Fil: Orellana, Sebastián. Universidad de Valparaíso; Chile
Fil: Rodiño, Julio. Universidad de Valparaíso; Chile
Fil: Lehue, Fernando. Universidad de Valparaíso; Chile
Fil: Cruzat, Josephine. Universidad Adolfo Ibañez; Chile
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brzezicka, Aneta. No especifíca;
Fil: Orio, Patricio. Universidad de Valparaíso; Chile
Fil: Kowalczyk Grębska, Natalia. No especifíca;
Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
NEUROSCIENCE
NEUROIMAGING
MODELING
EXPERTISE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265738
Ver los metadatos del registro completo
id |
CONICETDig_b50cc103e15102a9b8a349e8e72b573f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265738 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modelingCoronel Oliveros, CarlosMedel, VicenteOrellana, SebastiánRodiño, JulioLehue, FernandoCruzat, JosephineTagliazucchi, Enzo RodolfoBrzezicka, AnetaOrio, PatricioKowalczyk Grębska, NataliaIbañez, Agustin MarianoNEUROSCIENCENEUROIMAGINGMODELINGEXPERTISEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; ChileFil: Medel, Vicente. Universidad Adolfo Ibañez; ChileFil: Orellana, Sebastián. Universidad de Valparaíso; ChileFil: Rodiño, Julio. Universidad de Valparaíso; ChileFil: Lehue, Fernando. Universidad de Valparaíso; ChileFil: Cruzat, Josephine. Universidad Adolfo Ibañez; ChileFil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Brzezicka, Aneta. No especifíca;Fil: Orio, Patricio. Universidad de Valparaíso; ChileFil: Kowalczyk Grębska, Natalia. No especifíca;Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265738Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-181053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811924001289info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2024.120633info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:36Zoai:ri.conicet.gov.ar:11336/265738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:36.752CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
title |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
spellingShingle |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling Coronel Oliveros, Carlos NEUROSCIENCE NEUROIMAGING MODELING EXPERTISE |
title_short |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
title_full |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
title_fullStr |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
title_full_unstemmed |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
title_sort |
Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling |
dc.creator.none.fl_str_mv |
Coronel Oliveros, Carlos Medel, Vicente Orellana, Sebastián Rodiño, Julio Lehue, Fernando Cruzat, Josephine Tagliazucchi, Enzo Rodolfo Brzezicka, Aneta Orio, Patricio Kowalczyk Grębska, Natalia Ibañez, Agustin Mariano |
author |
Coronel Oliveros, Carlos |
author_facet |
Coronel Oliveros, Carlos Medel, Vicente Orellana, Sebastián Rodiño, Julio Lehue, Fernando Cruzat, Josephine Tagliazucchi, Enzo Rodolfo Brzezicka, Aneta Orio, Patricio Kowalczyk Grębska, Natalia Ibañez, Agustin Mariano |
author_role |
author |
author2 |
Medel, Vicente Orellana, Sebastián Rodiño, Julio Lehue, Fernando Cruzat, Josephine Tagliazucchi, Enzo Rodolfo Brzezicka, Aneta Orio, Patricio Kowalczyk Grębska, Natalia Ibañez, Agustin Mariano |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
NEUROSCIENCE NEUROIMAGING MODELING EXPERTISE |
topic |
NEUROSCIENCE NEUROIMAGING MODELING EXPERTISE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences. Fil: Coronel Oliveros, Carlos. Universidad Adolfo Ibañez; Chile Fil: Medel, Vicente. Universidad Adolfo Ibañez; Chile Fil: Orellana, Sebastián. Universidad de Valparaíso; Chile Fil: Rodiño, Julio. Universidad de Valparaíso; Chile Fil: Lehue, Fernando. Universidad de Valparaíso; Chile Fil: Cruzat, Josephine. Universidad Adolfo Ibañez; Chile Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Brzezicka, Aneta. No especifíca; Fil: Orio, Patricio. Universidad de Valparaíso; Chile Fil: Kowalczyk Grębska, Natalia. No especifíca; Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265738 Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-18 1053-8119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265738 |
identifier_str_mv |
Coronel Oliveros, Carlos; Medel, Vicente; Orellana, Sebastián; Rodiño, Julio; Lehue, Fernando; et al.; Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling; Elsevier; Journal Neuroimag; 293; 6-2024; 1-18 1053-8119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811924001289 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2024.120633 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269412495720448 |
score |
13.13397 |