Solution to the equations of the moment expansions
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
connected moments expansion
convergence
full solution
Rayleigh-Ritz method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85004
Ver los metadatos del registro completo
| id |
SEDICI_c1bbe22d491b5260a8ca8c41ecbe3d34 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85004 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Solution to the equations of the moment expansionsAmore, PaoloFernández, Francisco MarceloCiencias Exactasconnected moments expansionconvergencefull solutionRayleigh-Ritz methodWe develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf195-205http://sedici.unlp.edu.ar/handle/10915/85004enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:22Zoai:sedici.unlp.edu.ar:10915/85004Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:22.941SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Solution to the equations of the moment expansions |
| title |
Solution to the equations of the moment expansions |
| spellingShingle |
Solution to the equations of the moment expansions Amore, Paolo Ciencias Exactas connected moments expansion convergence full solution Rayleigh-Ritz method |
| title_short |
Solution to the equations of the moment expansions |
| title_full |
Solution to the equations of the moment expansions |
| title_fullStr |
Solution to the equations of the moment expansions |
| title_full_unstemmed |
Solution to the equations of the moment expansions |
| title_sort |
Solution to the equations of the moment expansions |
| dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
| author |
Amore, Paolo |
| author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
| author_role |
author |
| author2 |
Fernández, Francisco Marcelo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas connected moments expansion convergence full solution Rayleigh-Ritz method |
| topic |
Ciencias Exactas connected moments expansion convergence full solution Rayleigh-Ritz method |
| dc.description.none.fl_txt_mv |
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
| description |
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85004 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85004 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1895-1082 info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 195-205 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783186716065792 |
| score |
12.982451 |