Locally adaptative density estimation on Riemannian manifolds

Autores
Henry, Guillermo Sebastian; Muñoz, Andres Leandro; Rodriguez, Daniela Andrea
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also consider to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyzed two real example where two different manifolds are considered.
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muñoz, Andres Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Asymtotic Results
Density Estimation
Riemannian Manifolds
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2831

id CONICETDig_2d657d5722a7440ee0b55dd5411e100e
oai_identifier_str oai:ri.conicet.gov.ar:11336/2831
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Locally adaptative density estimation on Riemannian manifoldsHenry, Guillermo SebastianMuñoz, Andres LeandroRodriguez, Daniela AndreaAsymtotic ResultsDensity EstimationRiemannian Manifoldshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also consider to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyzed two real example where two different manifolds are considered.Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muñoz, Andres Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaInstitut d'Estadística de Catalunya2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2831Henry, Guillermo Sebastian; Muñoz, Andres Leandro; Rodriguez, Daniela Andrea; Locally adaptative density estimation on Riemannian manifolds; Institut d'Estadística de Catalunya; Statistics and Operations Research Transactions; 37; 2; 7-2013; 111-1301696-22812013-8830enginfo:eu-repo/semantics/altIdentifier/url/http://www.idescat.cat/sort/artpublished.htmlinfo:eu-repo/semantics/altIdentifier/url/http://dialnet.unirioja.es/servlet/articulo?codigo=4539859info:eu-repo/semantics/altIdentifier/url/http://www.raco.cat/index.php/SORT/article/view/271165/358807info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:21Zoai:ri.conicet.gov.ar:11336/2831instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:21.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Locally adaptative density estimation on Riemannian manifolds
title Locally adaptative density estimation on Riemannian manifolds
spellingShingle Locally adaptative density estimation on Riemannian manifolds
Henry, Guillermo Sebastian
Asymtotic Results
Density Estimation
Riemannian Manifolds
title_short Locally adaptative density estimation on Riemannian manifolds
title_full Locally adaptative density estimation on Riemannian manifolds
title_fullStr Locally adaptative density estimation on Riemannian manifolds
title_full_unstemmed Locally adaptative density estimation on Riemannian manifolds
title_sort Locally adaptative density estimation on Riemannian manifolds
dc.creator.none.fl_str_mv Henry, Guillermo Sebastian
Muñoz, Andres Leandro
Rodriguez, Daniela Andrea
author Henry, Guillermo Sebastian
author_facet Henry, Guillermo Sebastian
Muñoz, Andres Leandro
Rodriguez, Daniela Andrea
author_role author
author2 Muñoz, Andres Leandro
Rodriguez, Daniela Andrea
author2_role author
author
dc.subject.none.fl_str_mv Asymtotic Results
Density Estimation
Riemannian Manifolds
topic Asymtotic Results
Density Estimation
Riemannian Manifolds
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also consider to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyzed two real example where two different manifolds are considered.
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muñoz, Andres Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also consider to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyzed two real example where two different manifolds are considered.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2831
Henry, Guillermo Sebastian; Muñoz, Andres Leandro; Rodriguez, Daniela Andrea; Locally adaptative density estimation on Riemannian manifolds; Institut d'Estadística de Catalunya; Statistics and Operations Research Transactions; 37; 2; 7-2013; 111-130
1696-2281
2013-8830
url http://hdl.handle.net/11336/2831
identifier_str_mv Henry, Guillermo Sebastian; Muñoz, Andres Leandro; Rodriguez, Daniela Andrea; Locally adaptative density estimation on Riemannian manifolds; Institut d'Estadística de Catalunya; Statistics and Operations Research Transactions; 37; 2; 7-2013; 111-130
1696-2281
2013-8830
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.idescat.cat/sort/artpublished.html
info:eu-repo/semantics/altIdentifier/url/http://dialnet.unirioja.es/servlet/articulo?codigo=4539859
info:eu-repo/semantics/altIdentifier/url/http://www.raco.cat/index.php/SORT/article/view/271165/358807
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institut d'Estadística de Catalunya
publisher.none.fl_str_mv Institut d'Estadística de Catalunya
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270041283756032
score 13.13397