Nonlinear Schroedinger equation in the presence of uniform acceleration
- Autores
- Plastino, Ángel Ricardo; Tsallis, C.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a recently proposed nonlinear Schroedinger equation exhibiting solitonlike solutions of the power-law form ei(kx−wt) q , involving the q-exponential function which naturally emerges within nonextensive thermostatistics [ez q ≡ [1 + (1 − q)z] 1/(1−q) , with ez 1 = ez ]. Since these basic solutions behave like free particles, obeying p = k, E = ω, and E = p2/2m (1 ≤ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force − ma. The latter interpretation naturally leads to the evolution equation i ∂ ∂t 0 = − 1 2−q 2 2m ∂2 ∂x2 0 2−q + V(x) 0 q with V(x) = max. Remarkably enough, the potential V couples to q, instead of coupling to , as happens in the familiar linear case (q = 1).
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina. Universidad de Granada; España
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas F´ısicas and National Institute of Science and Technology for Complex Systems; Brasil. Santa Fe Institute; México - Materia
-
Nonlinear Schroedinger Equation
Uniform Acceleration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24282
Ver los metadatos del registro completo
id |
CONICETDig_901c6c85e4ad5a07c1682336c164c72e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24282 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear Schroedinger equation in the presence of uniform accelerationPlastino, Ángel RicardoTsallis, C.Nonlinear Schroedinger EquationUniform Accelerationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider a recently proposed nonlinear Schroedinger equation exhibiting solitonlike solutions of the power-law form ei(kx−wt) q , involving the q-exponential function which naturally emerges within nonextensive thermostatistics [ez q ≡ [1 + (1 − q)z] 1/(1−q) , with ez 1 = ez ]. Since these basic solutions behave like free particles, obeying p = k, E = ω, and E = p2/2m (1 ≤ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force − ma. The latter interpretation naturally leads to the evolution equation i ∂ ∂t 0 = − 1 2−q 2 2m ∂2 ∂x2 0 2−q + V(x) 0 q with V(x) = max. Remarkably enough, the potential V couples to q, instead of coupling to , as happens in the familiar linear case (q = 1).Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina. Universidad de Granada; EspañaFil: Tsallis, C.. Centro Brasileiro de Pesquisas F´ısicas and National Institute of Science and Technology for Complex Systems; Brasil. Santa Fe Institute; MéxicoAmerican Institute of Physics2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24282Plastino, Ángel Ricardo; Tsallis, C.; Nonlinear Schroedinger equation in the presence of uniform acceleration; American Institute of Physics; Journal of Mathematical Physics; 54; 4; 4-2013; 41505-415100022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4798999info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4798999info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:54Zoai:ri.conicet.gov.ar:11336/24282instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:55.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
title |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
spellingShingle |
Nonlinear Schroedinger equation in the presence of uniform acceleration Plastino, Ángel Ricardo Nonlinear Schroedinger Equation Uniform Acceleration |
title_short |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
title_full |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
title_fullStr |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
title_full_unstemmed |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
title_sort |
Nonlinear Schroedinger equation in the presence of uniform acceleration |
dc.creator.none.fl_str_mv |
Plastino, Ángel Ricardo Tsallis, C. |
author |
Plastino, Ángel Ricardo |
author_facet |
Plastino, Ángel Ricardo Tsallis, C. |
author_role |
author |
author2 |
Tsallis, C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nonlinear Schroedinger Equation Uniform Acceleration |
topic |
Nonlinear Schroedinger Equation Uniform Acceleration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a recently proposed nonlinear Schroedinger equation exhibiting solitonlike solutions of the power-law form ei(kx−wt) q , involving the q-exponential function which naturally emerges within nonextensive thermostatistics [ez q ≡ [1 + (1 − q)z] 1/(1−q) , with ez 1 = ez ]. Since these basic solutions behave like free particles, obeying p = k, E = ω, and E = p2/2m (1 ≤ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force − ma. The latter interpretation naturally leads to the evolution equation i ∂ ∂t 0 = − 1 2−q 2 2m ∂2 ∂x2 0 2−q + V(x) 0 q with V(x) = max. Remarkably enough, the potential V couples to q, instead of coupling to , as happens in the familiar linear case (q = 1). Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina. Universidad de Granada; España Fil: Tsallis, C.. Centro Brasileiro de Pesquisas F´ısicas and National Institute of Science and Technology for Complex Systems; Brasil. Santa Fe Institute; México |
description |
We consider a recently proposed nonlinear Schroedinger equation exhibiting solitonlike solutions of the power-law form ei(kx−wt) q , involving the q-exponential function which naturally emerges within nonextensive thermostatistics [ez q ≡ [1 + (1 − q)z] 1/(1−q) , with ez 1 = ez ]. Since these basic solutions behave like free particles, obeying p = k, E = ω, and E = p2/2m (1 ≤ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force − ma. The latter interpretation naturally leads to the evolution equation i ∂ ∂t 0 = − 1 2−q 2 2m ∂2 ∂x2 0 2−q + V(x) 0 q with V(x) = max. Remarkably enough, the potential V couples to q, instead of coupling to , as happens in the familiar linear case (q = 1). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24282 Plastino, Ángel Ricardo; Tsallis, C.; Nonlinear Schroedinger equation in the presence of uniform acceleration; American Institute of Physics; Journal of Mathematical Physics; 54; 4; 4-2013; 41505-41510 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24282 |
identifier_str_mv |
Plastino, Ángel Ricardo; Tsallis, C.; Nonlinear Schroedinger equation in the presence of uniform acceleration; American Institute of Physics; Journal of Mathematical Physics; 54; 4; 4-2013; 41505-41510 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4798999 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4798999 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269061459738624 |
score |
13.13397 |