Notes on w-inconsistent Theories of Truth in Second-Order Languages
- Autores
- Barrio, Eduardo Alejandro; Picollo, Lavinia María
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is widely accepted that a theory of truth for arithmetic should be consistent, but ω-consistency is less frequently required. This paper argues that ω-consistency is a highly desirable feature for such theories. The point has already been made for first-order languages, though the evidence is not entirely conclusive. We show that in the second-order case the consequence of adopting ω-inconsistent truth theories for arithmetic is unsatisfiability. In order to bring out this point, well known ω-inconsistent theories of truth are considered: the revision theory of nearly stable truth T# and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of such theories.
Fil: Barrio, Eduardo Alejandro. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Picollo, Lavinia María. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Truth
Second Order Arithmetic
Omega Inconsistency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3658
Ver los metadatos del registro completo
id |
CONICETDig_bdb7e32137b8b3af0b2638c3c6eca89a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3658 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Notes on w-inconsistent Theories of Truth in Second-Order LanguagesBarrio, Eduardo AlejandroPicollo, Lavinia MaríaTruthSecond Order ArithmeticOmega Inconsistencyhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6It is widely accepted that a theory of truth for arithmetic should be consistent, but ω-consistency is less frequently required. This paper argues that ω-consistency is a highly desirable feature for such theories. The point has already been made for first-order languages, though the evidence is not entirely conclusive. We show that in the second-order case the consequence of adopting ω-inconsistent truth theories for arithmetic is unsatisfiability. In order to bring out this point, well known ω-inconsistent theories of truth are considered: the revision theory of nearly stable truth T# and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of such theories.Fil: Barrio, Eduardo Alejandro. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Picollo, Lavinia María. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCambridge University Press2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3658Barrio, Eduardo Alejandro; Picollo, Lavinia María; Notes on w-inconsistent Theories of Truth in Second-Order Languages; Cambridge University Press; Review of Symbolic Logic; VI; 4; 12-2013; 733-7411755-0203enginfo:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9082404info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020313000269info:eu-repo/semantics/altIdentifier/issn/1755-0203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:11Zoai:ri.conicet.gov.ar:11336/3658instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:12.182CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
title |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
spellingShingle |
Notes on w-inconsistent Theories of Truth in Second-Order Languages Barrio, Eduardo Alejandro Truth Second Order Arithmetic Omega Inconsistency |
title_short |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
title_full |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
title_fullStr |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
title_full_unstemmed |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
title_sort |
Notes on w-inconsistent Theories of Truth in Second-Order Languages |
dc.creator.none.fl_str_mv |
Barrio, Eduardo Alejandro Picollo, Lavinia María |
author |
Barrio, Eduardo Alejandro |
author_facet |
Barrio, Eduardo Alejandro Picollo, Lavinia María |
author_role |
author |
author2 |
Picollo, Lavinia María |
author2_role |
author |
dc.subject.none.fl_str_mv |
Truth Second Order Arithmetic Omega Inconsistency |
topic |
Truth Second Order Arithmetic Omega Inconsistency |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
It is widely accepted that a theory of truth for arithmetic should be consistent, but ω-consistency is less frequently required. This paper argues that ω-consistency is a highly desirable feature for such theories. The point has already been made for first-order languages, though the evidence is not entirely conclusive. We show that in the second-order case the consequence of adopting ω-inconsistent truth theories for arithmetic is unsatisfiability. In order to bring out this point, well known ω-inconsistent theories of truth are considered: the revision theory of nearly stable truth T# and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of such theories. Fil: Barrio, Eduardo Alejandro. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Picollo, Lavinia María. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
It is widely accepted that a theory of truth for arithmetic should be consistent, but ω-consistency is less frequently required. This paper argues that ω-consistency is a highly desirable feature for such theories. The point has already been made for first-order languages, though the evidence is not entirely conclusive. We show that in the second-order case the consequence of adopting ω-inconsistent truth theories for arithmetic is unsatisfiability. In order to bring out this point, well known ω-inconsistent theories of truth are considered: the revision theory of nearly stable truth T# and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of such theories. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3658 Barrio, Eduardo Alejandro; Picollo, Lavinia María; Notes on w-inconsistent Theories of Truth in Second-Order Languages; Cambridge University Press; Review of Symbolic Logic; VI; 4; 12-2013; 733-741 1755-0203 |
url |
http://hdl.handle.net/11336/3658 |
identifier_str_mv |
Barrio, Eduardo Alejandro; Picollo, Lavinia María; Notes on w-inconsistent Theories of Truth in Second-Order Languages; Cambridge University Press; Review of Symbolic Logic; VI; 4; 12-2013; 733-741 1755-0203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9082404 info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020313000269 info:eu-repo/semantics/altIdentifier/issn/1755-0203 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082704618029056 |
score |
13.22299 |