Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions
- Autores
- Fernández Ferreyra, Damián Roberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well-known that the primal quadratic growth condition of the classical augmented Lagrangian around a local minimizer can be obtained under the second-order sufficient optimality condition. In this paper, we show that those conditions are indeed equivalent. Moreover, we prove that the primal quadratic growth condition of the sharp augmented Lagrangian around a local minimizer is in fact equivalent to the weak second-order sufficient optimality condition. In addition, we present some secondary results involving the sharp augmented Lagrangian.
Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
AUGMENTED LAGRANGIAN
SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION
SHARP AUGMENTED LAGRANGIAN
WEAK SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143331
Ver los metadatos del registro completo
id |
CONICETDig_29b0e400e54f4fa6a10eaea6b54e0450 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143331 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditionsFernández Ferreyra, Damián RobertoAUGMENTED LAGRANGIANSECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONSHARP AUGMENTED LAGRANGIANWEAK SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well-known that the primal quadratic growth condition of the classical augmented Lagrangian around a local minimizer can be obtained under the second-order sufficient optimality condition. In this paper, we show that those conditions are indeed equivalent. Moreover, we prove that the primal quadratic growth condition of the sharp augmented Lagrangian around a local minimizer is in fact equivalent to the weak second-order sufficient optimality condition. In addition, we present some secondary results involving the sharp augmented Lagrangian.Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; ArgentinaTaylor & Francis Ltd2020-08-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143331Fernández Ferreyra, Damián Roberto; Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions; Taylor & Francis Ltd; Optimization; 21-8-2020; 1-170233-19341029-4945CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2020.1804567info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331934.2020.1804567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:18Zoai:ri.conicet.gov.ar:11336/143331instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:18.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
title |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
spellingShingle |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions Fernández Ferreyra, Damián Roberto AUGMENTED LAGRANGIAN SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION SHARP AUGMENTED LAGRANGIAN WEAK SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION |
title_short |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
title_full |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
title_fullStr |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
title_full_unstemmed |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
title_sort |
Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions |
dc.creator.none.fl_str_mv |
Fernández Ferreyra, Damián Roberto |
author |
Fernández Ferreyra, Damián Roberto |
author_facet |
Fernández Ferreyra, Damián Roberto |
author_role |
author |
dc.subject.none.fl_str_mv |
AUGMENTED LAGRANGIAN SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION SHARP AUGMENTED LAGRANGIAN WEAK SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION |
topic |
AUGMENTED LAGRANGIAN SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION SHARP AUGMENTED LAGRANGIAN WEAK SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is well-known that the primal quadratic growth condition of the classical augmented Lagrangian around a local minimizer can be obtained under the second-order sufficient optimality condition. In this paper, we show that those conditions are indeed equivalent. Moreover, we prove that the primal quadratic growth condition of the sharp augmented Lagrangian around a local minimizer is in fact equivalent to the weak second-order sufficient optimality condition. In addition, we present some secondary results involving the sharp augmented Lagrangian. Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina |
description |
It is well-known that the primal quadratic growth condition of the classical augmented Lagrangian around a local minimizer can be obtained under the second-order sufficient optimality condition. In this paper, we show that those conditions are indeed equivalent. Moreover, we prove that the primal quadratic growth condition of the sharp augmented Lagrangian around a local minimizer is in fact equivalent to the weak second-order sufficient optimality condition. In addition, we present some secondary results involving the sharp augmented Lagrangian. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143331 Fernández Ferreyra, Damián Roberto; Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions; Taylor & Francis Ltd; Optimization; 21-8-2020; 1-17 0233-1934 1029-4945 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143331 |
identifier_str_mv |
Fernández Ferreyra, Damián Roberto; Augmented Lagrangians quadratic growth and second-order sufficient optimality conditions; Taylor & Francis Ltd; Optimization; 21-8-2020; 1-17 0233-1934 1029-4945 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2020.1804567 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331934.2020.1804567 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269631113330688 |
score |
13.13397 |