Inconsistency, paraconsistency and ω-inconsistency

Autores
Da Re, Bruno
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.
Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Materia
PARACONSISTENCY
SUBSTRUCTURAL THEORIES OF TRUTH
ω-INCONSISTENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97256

id CONICETDig_2d73f55baf76a5134885c78bb9cd0842
oai_identifier_str oai:ri.conicet.gov.ar:11336/97256
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inconsistency, paraconsistency and ω-inconsistencyDa Re, BrunoPARACONSISTENCYSUBSTRUCTURAL THEORIES OF TRUTHω-INCONSISTENCYhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaUniversidade Federal de Santa Catarina. Departamento de Filosofía2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97256Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-1881414-42471808-1711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2018v22n1p171info:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2018v22n1p171info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:39Zoai:ri.conicet.gov.ar:11336/97256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:39.486CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inconsistency, paraconsistency and ω-inconsistency
title Inconsistency, paraconsistency and ω-inconsistency
spellingShingle Inconsistency, paraconsistency and ω-inconsistency
Da Re, Bruno
PARACONSISTENCY
SUBSTRUCTURAL THEORIES OF TRUTH
ω-INCONSISTENCY
title_short Inconsistency, paraconsistency and ω-inconsistency
title_full Inconsistency, paraconsistency and ω-inconsistency
title_fullStr Inconsistency, paraconsistency and ω-inconsistency
title_full_unstemmed Inconsistency, paraconsistency and ω-inconsistency
title_sort Inconsistency, paraconsistency and ω-inconsistency
dc.creator.none.fl_str_mv Da Re, Bruno
author Da Re, Bruno
author_facet Da Re, Bruno
author_role author
dc.subject.none.fl_str_mv PARACONSISTENCY
SUBSTRUCTURAL THEORIES OF TRUTH
ω-INCONSISTENCY
topic PARACONSISTENCY
SUBSTRUCTURAL THEORIES OF TRUTH
ω-INCONSISTENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.3
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.
Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
description In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97256
Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-188
1414-4247
1808-1711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97256
identifier_str_mv Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-188
1414-4247
1808-1711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2018v22n1p171
info:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2018v22n1p171
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Catarina. Departamento de Filosofía
publisher.none.fl_str_mv Universidade Federal de Santa Catarina. Departamento de Filosofía
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269651161055232
score 13.13397