Inconsistency, paraconsistency and ω-inconsistency
- Autores
- Da Re, Bruno
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.
Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina - Materia
-
PARACONSISTENCY
SUBSTRUCTURAL THEORIES OF TRUTH
ω-INCONSISTENCY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97256
Ver los metadatos del registro completo
id |
CONICETDig_2d73f55baf76a5134885c78bb9cd0842 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97256 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inconsistency, paraconsistency and ω-inconsistencyDa Re, BrunoPARACONSISTENCYSUBSTRUCTURAL THEORIES OF TRUTHω-INCONSISTENCYhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaUniversidade Federal de Santa Catarina. Departamento de Filosofía2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97256Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-1881414-42471808-1711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2018v22n1p171info:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2018v22n1p171info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:39Zoai:ri.conicet.gov.ar:11336/97256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:39.486CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inconsistency, paraconsistency and ω-inconsistency |
title |
Inconsistency, paraconsistency and ω-inconsistency |
spellingShingle |
Inconsistency, paraconsistency and ω-inconsistency Da Re, Bruno PARACONSISTENCY SUBSTRUCTURAL THEORIES OF TRUTH ω-INCONSISTENCY |
title_short |
Inconsistency, paraconsistency and ω-inconsistency |
title_full |
Inconsistency, paraconsistency and ω-inconsistency |
title_fullStr |
Inconsistency, paraconsistency and ω-inconsistency |
title_full_unstemmed |
Inconsistency, paraconsistency and ω-inconsistency |
title_sort |
Inconsistency, paraconsistency and ω-inconsistency |
dc.creator.none.fl_str_mv |
Da Re, Bruno |
author |
Da Re, Bruno |
author_facet |
Da Re, Bruno |
author_role |
author |
dc.subject.none.fl_str_mv |
PARACONSISTENCY SUBSTRUCTURAL THEORIES OF TRUTH ω-INCONSISTENCY |
topic |
PARACONSISTENCY SUBSTRUCTURAL THEORIES OF TRUTH ω-INCONSISTENCY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories. Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentina |
description |
In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97256 Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-188 1414-4247 1808-1711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97256 |
identifier_str_mv |
Da Re, Bruno; Inconsistency, paraconsistency and ω-inconsistency; Universidade Federal de Santa Catarina. Departamento de Filosofía; Principia; 22; 1; 4-2018; 171-188 1414-4247 1808-1711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2018v22n1p171 info:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2018v22n1p171 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Catarina. Departamento de Filosofía |
publisher.none.fl_str_mv |
Universidade Federal de Santa Catarina. Departamento de Filosofía |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269651161055232 |
score |
13.13397 |