Non-deterministic Conditionals and Transparent Truth

Autores
Rosenblatt, Lucas Daniel; Pailos, Federico Matias
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.
Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; Argentina
Fil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CURRY’S PARADOX
NAIVE TRUTH THEORY
NON-DETERMINISTIC SEMANTICS
ŁUKASIEWICZ LOGIC
Ω-INCONSISTENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99354

id CONICETDig_15a023bce74ba679d6fddc6eca0ef749
oai_identifier_str oai:ri.conicet.gov.ar:11336/99354
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-deterministic Conditionals and Transparent TruthRosenblatt, Lucas DanielPailos, Federico MatiasCURRY’S PARADOXNAIVE TRUTH THEORYNON-DETERMINISTIC SEMANTICSŁUKASIEWICZ LOGICΩ-INCONSISTENCYhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; ArgentinaFil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99354Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-5980039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11225-014-9580-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9580-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:45:14Zoai:ri.conicet.gov.ar:11336/99354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:45:15.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-deterministic Conditionals and Transparent Truth
title Non-deterministic Conditionals and Transparent Truth
spellingShingle Non-deterministic Conditionals and Transparent Truth
Rosenblatt, Lucas Daniel
CURRY’S PARADOX
NAIVE TRUTH THEORY
NON-DETERMINISTIC SEMANTICS
ŁUKASIEWICZ LOGIC
Ω-INCONSISTENCY
title_short Non-deterministic Conditionals and Transparent Truth
title_full Non-deterministic Conditionals and Transparent Truth
title_fullStr Non-deterministic Conditionals and Transparent Truth
title_full_unstemmed Non-deterministic Conditionals and Transparent Truth
title_sort Non-deterministic Conditionals and Transparent Truth
dc.creator.none.fl_str_mv Rosenblatt, Lucas Daniel
Pailos, Federico Matias
author Rosenblatt, Lucas Daniel
author_facet Rosenblatt, Lucas Daniel
Pailos, Federico Matias
author_role author
author2 Pailos, Federico Matias
author2_role author
dc.subject.none.fl_str_mv CURRY’S PARADOX
NAIVE TRUTH THEORY
NON-DETERMINISTIC SEMANTICS
ŁUKASIEWICZ LOGIC
Ω-INCONSISTENCY
topic CURRY’S PARADOX
NAIVE TRUTH THEORY
NON-DETERMINISTIC SEMANTICS
ŁUKASIEWICZ LOGIC
Ω-INCONSISTENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.3
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.
Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; Argentina
Fil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99354
Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-598
0039-3215
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99354
identifier_str_mv Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-598
0039-3215
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11225-014-9580-1
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9580-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083552794378240
score 13.22299