Non-deterministic Conditionals and Transparent Truth
- Autores
- Rosenblatt, Lucas Daniel; Pailos, Federico Matias
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.
Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; Argentina
Fil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CURRY’S PARADOX
NAIVE TRUTH THEORY
NON-DETERMINISTIC SEMANTICS
ŁUKASIEWICZ LOGIC
Ω-INCONSISTENCY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99354
Ver los metadatos del registro completo
id |
CONICETDig_15a023bce74ba679d6fddc6eca0ef749 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99354 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-deterministic Conditionals and Transparent TruthRosenblatt, Lucas DanielPailos, Federico MatiasCURRY’S PARADOXNAIVE TRUTH THEORYNON-DETERMINISTIC SEMANTICSŁUKASIEWICZ LOGICΩ-INCONSISTENCYhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent.Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; ArgentinaFil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99354Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-5980039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11225-014-9580-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9580-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:45:14Zoai:ri.conicet.gov.ar:11336/99354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:45:15.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-deterministic Conditionals and Transparent Truth |
title |
Non-deterministic Conditionals and Transparent Truth |
spellingShingle |
Non-deterministic Conditionals and Transparent Truth Rosenblatt, Lucas Daniel CURRY’S PARADOX NAIVE TRUTH THEORY NON-DETERMINISTIC SEMANTICS ŁUKASIEWICZ LOGIC Ω-INCONSISTENCY |
title_short |
Non-deterministic Conditionals and Transparent Truth |
title_full |
Non-deterministic Conditionals and Transparent Truth |
title_fullStr |
Non-deterministic Conditionals and Transparent Truth |
title_full_unstemmed |
Non-deterministic Conditionals and Transparent Truth |
title_sort |
Non-deterministic Conditionals and Transparent Truth |
dc.creator.none.fl_str_mv |
Rosenblatt, Lucas Daniel Pailos, Federico Matias |
author |
Rosenblatt, Lucas Daniel |
author_facet |
Rosenblatt, Lucas Daniel Pailos, Federico Matias |
author_role |
author |
author2 |
Pailos, Federico Matias |
author2_role |
author |
dc.subject.none.fl_str_mv |
CURRY’S PARADOX NAIVE TRUTH THEORY NON-DETERMINISTIC SEMANTICS ŁUKASIEWICZ LOGIC Ω-INCONSISTENCY |
topic |
CURRY’S PARADOX NAIVE TRUTH THEORY NON-DETERMINISTIC SEMANTICS ŁUKASIEWICZ LOGIC Ω-INCONSISTENCY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent. Fil: Rosenblatt, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sociedad Argentina de Análisis Filosófico; Argentina Fil: Pailos, Federico Matias. Sociedad Argentina de Análisis Filosófico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Theories where truth is a naive concept fall under the following dilemma: either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is not trivial but the resulting conditional is too weak. In this paper we explore a number of theories which arguably do not fall under this dilemma. In these theories the conditional is characterized in terms of (infinitely-valued) non-deterministic matrices. These non-deterministic theories are similar to infinitely-valued Łukasiewicz logic in that they are consistent and their conditionals are quite strong. The difference is the following: while Łukasiewicz logic is ω-inconsistent, the non-deterministic theories might turn out to be ω-consistent. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99354 Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-598 0039-3215 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99354 |
identifier_str_mv |
Rosenblatt, Lucas Daniel; Pailos, Federico Matias; Non-deterministic Conditionals and Transparent Truth; Springer; Studia Logica; 103; 3; 11-2015; 579-598 0039-3215 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11225-014-9580-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9580-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083552794378240 |
score |
13.22299 |