On Improving the Efficiency of Modifier Adaptation via Directional Information
- Autores
- Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.
Fil: Rodrigues, D.. Instituto Superior Tecnico; Portugal
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Francia - Materia
-
ACTIVE SET
DOMINANT GRADIENTS
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210948
Ver los metadatos del registro completo
id |
CONICETDig_36be1704fd5f7eb372fb5184e0c3d5fb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210948 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Improving the Efficiency of Modifier Adaptation via Directional InformationRodrigues, D.Marchetti, Alejandro GabrielBonvin, D.ACTIVE SETDOMINANT GRADIENTSMODIFIER ADAPTATIONPLANT-MODEL MISMATCHREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.Fil: Rodrigues, D.. Instituto Superior Tecnico; PortugalFil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; FranciaPergamon-Elsevier Science Ltd2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210948Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-150098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135422002058info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2022.107867info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:19Zoai:ri.conicet.gov.ar:11336/210948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:20.241CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
title |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
spellingShingle |
On Improving the Efficiency of Modifier Adaptation via Directional Information Rodrigues, D. ACTIVE SET DOMINANT GRADIENTS MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
title_short |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
title_full |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
title_fullStr |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
title_full_unstemmed |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
title_sort |
On Improving the Efficiency of Modifier Adaptation via Directional Information |
dc.creator.none.fl_str_mv |
Rodrigues, D. Marchetti, Alejandro Gabriel Bonvin, D. |
author |
Rodrigues, D. |
author_facet |
Rodrigues, D. Marchetti, Alejandro Gabriel Bonvin, D. |
author_role |
author |
author2 |
Marchetti, Alejandro Gabriel Bonvin, D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ACTIVE SET DOMINANT GRADIENTS MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
topic |
ACTIVE SET DOMINANT GRADIENTS MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant. Fil: Rodrigues, D.. Instituto Superior Tecnico; Portugal Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Francia |
description |
In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210948 Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-15 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210948 |
identifier_str_mv |
Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-15 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135422002058 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2022.107867 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269954050621440 |
score |
13.13397 |