On Improving the Efficiency of Modifier Adaptation via Directional Information

Autores
Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.
Fil: Rodrigues, D.. Instituto Superior Tecnico; Portugal
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Francia
Materia
ACTIVE SET
DOMINANT GRADIENTS
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210948

id CONICETDig_36be1704fd5f7eb372fb5184e0c3d5fb
oai_identifier_str oai:ri.conicet.gov.ar:11336/210948
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On Improving the Efficiency of Modifier Adaptation via Directional InformationRodrigues, D.Marchetti, Alejandro GabrielBonvin, D.ACTIVE SETDOMINANT GRADIENTSMODIFIER ADAPTATIONPLANT-MODEL MISMATCHREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.Fil: Rodrigues, D.. Instituto Superior Tecnico; PortugalFil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; FranciaPergamon-Elsevier Science Ltd2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210948Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-150098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135422002058info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2022.107867info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:19Zoai:ri.conicet.gov.ar:11336/210948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:20.241CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On Improving the Efficiency of Modifier Adaptation via Directional Information
title On Improving the Efficiency of Modifier Adaptation via Directional Information
spellingShingle On Improving the Efficiency of Modifier Adaptation via Directional Information
Rodrigues, D.
ACTIVE SET
DOMINANT GRADIENTS
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
title_short On Improving the Efficiency of Modifier Adaptation via Directional Information
title_full On Improving the Efficiency of Modifier Adaptation via Directional Information
title_fullStr On Improving the Efficiency of Modifier Adaptation via Directional Information
title_full_unstemmed On Improving the Efficiency of Modifier Adaptation via Directional Information
title_sort On Improving the Efficiency of Modifier Adaptation via Directional Information
dc.creator.none.fl_str_mv Rodrigues, D.
Marchetti, Alejandro Gabriel
Bonvin, D.
author Rodrigues, D.
author_facet Rodrigues, D.
Marchetti, Alejandro Gabriel
Bonvin, D.
author_role author
author2 Marchetti, Alejandro Gabriel
Bonvin, D.
author2_role author
author
dc.subject.none.fl_str_mv ACTIVE SET
DOMINANT GRADIENTS
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
topic ACTIVE SET
DOMINANT GRADIENTS
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.
Fil: Rodrigues, D.. Instituto Superior Tecnico; Portugal
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Francia
description In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input-affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the number of input directions, thereby improving the efficiency of MA in practice. The first approach capitalizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimality efficiently by adapting the first-order modifiers only along the dominant input directions. These approaches allow generating several alternative MA schemes, which are analyzed in terms of the number of degrees of freedom and compared in a simulated study of the Williams–Otto plant.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210948
Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-15
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210948
identifier_str_mv Rodrigues, D.; Marchetti, Alejandro Gabriel; Bonvin, D.; On Improving the Efficiency of Modifier Adaptation via Directional Information; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 164; 2-2022; 1-15
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135422002058
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2022.107867
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269954050621440
score 13.13397