Active directional modifier adaptation for real-time optimization
- Autores
- Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.
Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Faulwasser, T.. Karlsruhe Institute of Technology; Alemania
Fil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; Suiza - Materia
-
INPUT DIMENSION REDUCTION
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88681
Ver los metadatos del registro completo
id |
CONICETDig_3507da54facc765e86c40f75b95328d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88681 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Active directional modifier adaptation for real-time optimizationSinghal, M.Marchetti, Alejandro GabrielFaulwasser, T.Bonvin, D.INPUT DIMENSION REDUCTIONMODIFIER ADAPTATIONPLANT-MODEL MISMATCHREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; SuizaFil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Faulwasser, T.. Karlsruhe Institute of Technology; AlemaniaFil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; SuizaPergamon-Elsevier Science Ltd2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88681Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-2610098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2018.02.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135418300838info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:22Zoai:ri.conicet.gov.ar:11336/88681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:22.363CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Active directional modifier adaptation for real-time optimization |
title |
Active directional modifier adaptation for real-time optimization |
spellingShingle |
Active directional modifier adaptation for real-time optimization Singhal, M. INPUT DIMENSION REDUCTION MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
title_short |
Active directional modifier adaptation for real-time optimization |
title_full |
Active directional modifier adaptation for real-time optimization |
title_fullStr |
Active directional modifier adaptation for real-time optimization |
title_full_unstemmed |
Active directional modifier adaptation for real-time optimization |
title_sort |
Active directional modifier adaptation for real-time optimization |
dc.creator.none.fl_str_mv |
Singhal, M. Marchetti, Alejandro Gabriel Faulwasser, T. Bonvin, D. |
author |
Singhal, M. |
author_facet |
Singhal, M. Marchetti, Alejandro Gabriel Faulwasser, T. Bonvin, D. |
author_role |
author |
author2 |
Marchetti, Alejandro Gabriel Faulwasser, T. Bonvin, D. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INPUT DIMENSION REDUCTION MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
topic |
INPUT DIMENSION REDUCTION MODIFIER ADAPTATION PLANT-MODEL MISMATCH REAL-TIME OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality. Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; Suiza Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Faulwasser, T.. Karlsruhe Institute of Technology; Alemania Fil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; Suiza |
description |
Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88681 Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-261 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88681 |
identifier_str_mv |
Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-261 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2018.02.016 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135418300838 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269908422885376 |
score |
13.13397 |