Active directional modifier adaptation for real-time optimization

Autores
Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.
Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Faulwasser, T.. Karlsruhe Institute of Technology; Alemania
Fil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; Suiza
Materia
INPUT DIMENSION REDUCTION
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88681

id CONICETDig_3507da54facc765e86c40f75b95328d7
oai_identifier_str oai:ri.conicet.gov.ar:11336/88681
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Active directional modifier adaptation for real-time optimizationSinghal, M.Marchetti, Alejandro GabrielFaulwasser, T.Bonvin, D.INPUT DIMENSION REDUCTIONMODIFIER ADAPTATIONPLANT-MODEL MISMATCHREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; SuizaFil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Faulwasser, T.. Karlsruhe Institute of Technology; AlemaniaFil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; SuizaPergamon-Elsevier Science Ltd2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88681Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-2610098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2018.02.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135418300838info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:22Zoai:ri.conicet.gov.ar:11336/88681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:22.363CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Active directional modifier adaptation for real-time optimization
title Active directional modifier adaptation for real-time optimization
spellingShingle Active directional modifier adaptation for real-time optimization
Singhal, M.
INPUT DIMENSION REDUCTION
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
title_short Active directional modifier adaptation for real-time optimization
title_full Active directional modifier adaptation for real-time optimization
title_fullStr Active directional modifier adaptation for real-time optimization
title_full_unstemmed Active directional modifier adaptation for real-time optimization
title_sort Active directional modifier adaptation for real-time optimization
dc.creator.none.fl_str_mv Singhal, M.
Marchetti, Alejandro Gabriel
Faulwasser, T.
Bonvin, D.
author Singhal, M.
author_facet Singhal, M.
Marchetti, Alejandro Gabriel
Faulwasser, T.
Bonvin, D.
author_role author
author2 Marchetti, Alejandro Gabriel
Faulwasser, T.
Bonvin, D.
author2_role author
author
author
dc.subject.none.fl_str_mv INPUT DIMENSION REDUCTION
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
topic INPUT DIMENSION REDUCTION
MODIFIER ADAPTATION
PLANT-MODEL MISMATCH
REAL-TIME OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.
Fil: Singhal, M.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Faulwasser, T.. Karlsruhe Institute of Technology; Alemania
Fil: Bonvin, D.. École Polytechnique Fédérale de Lausanne; Suiza
description Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient estimates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gradient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more reactive to changes and robust to large parametric uncertainties. Simulation results performed on the run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a nice balance between experimental cost and optimality.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88681
Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-261
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88681
identifier_str_mv Singhal, M.; Marchetti, Alejandro Gabriel; Faulwasser, T.; Bonvin, D.; Active directional modifier adaptation for real-time optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 115; 7-2018; 246-261
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2018.02.016
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135418300838
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269908422885376
score 13.13397