Generalized Schur complements and P-complementable operators

Autores
Massey, Pedro Gustavo; Stojanoff, Demetrio
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space H. We say that A is P-complementable if A−µP≥ 0 holds for some µ ∈ R. In this case we define IP (A) = max{µ ∈ R : A − µP ≥0}. As a tool for computing IP(A) we introduce a natural generalization of the Schur complement or shorted operator of A to f A to S = R(P ), denoted by Σ(A, P ). We give expressions and a characterization for IP(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator  Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair. We give some applications in the finite dimensional context.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Materia
POSITIVE SEMIDEFINITE OPERATORS
SHORTED OPERATOR
HADAMARD PRODUCT
COMPLETELY POSITIVE MAPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108538

id CONICETDig_bd2953f7cd4a55139340b384d63c0789
oai_identifier_str oai:ri.conicet.gov.ar:11336/108538
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized Schur complements and P-complementable operatorsMassey, Pedro GustavoStojanoff, DemetrioPOSITIVE SEMIDEFINITE OPERATORSSHORTED OPERATORHADAMARD PRODUCTCOMPLETELY POSITIVE MAPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space H. We say that A is P-complementable if A−µP≥ 0 holds for some µ ∈ R. In this case we define IP (A) = max{µ ∈ R : A − µP ≥0}. As a tool for computing IP(A) we introduce a natural generalization of the Schur complement or shorted operator of A to f A to S = R(P ), denoted by Σ(A, P ). We give expressions and a characterization for IP(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator  Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair. We give some applications in the finite dimensional context.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier Science Inc2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108538Massey, Pedro Gustavo; Stojanoff, Demetrio; Generalized Schur complements and P-complementable operators; Elsevier Science Inc; Linear Algebra and its Applications; 393; 12-2004; 299-3180024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379503006955info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:03Zoai:ri.conicet.gov.ar:11336/108538instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:04.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized Schur complements and P-complementable operators
title Generalized Schur complements and P-complementable operators
spellingShingle Generalized Schur complements and P-complementable operators
Massey, Pedro Gustavo
POSITIVE SEMIDEFINITE OPERATORS
SHORTED OPERATOR
HADAMARD PRODUCT
COMPLETELY POSITIVE MAPS
title_short Generalized Schur complements and P-complementable operators
title_full Generalized Schur complements and P-complementable operators
title_fullStr Generalized Schur complements and P-complementable operators
title_full_unstemmed Generalized Schur complements and P-complementable operators
title_sort Generalized Schur complements and P-complementable operators
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Stojanoff, Demetrio
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Stojanoff, Demetrio
author_role author
author2 Stojanoff, Demetrio
author2_role author
dc.subject.none.fl_str_mv POSITIVE SEMIDEFINITE OPERATORS
SHORTED OPERATOR
HADAMARD PRODUCT
COMPLETELY POSITIVE MAPS
topic POSITIVE SEMIDEFINITE OPERATORS
SHORTED OPERATOR
HADAMARD PRODUCT
COMPLETELY POSITIVE MAPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space H. We say that A is P-complementable if A−µP≥ 0 holds for some µ ∈ R. In this case we define IP (A) = max{µ ∈ R : A − µP ≥0}. As a tool for computing IP(A) we introduce a natural generalization of the Schur complement or shorted operator of A to f A to S = R(P ), denoted by Σ(A, P ). We give expressions and a characterization for IP(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator  Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair. We give some applications in the finite dimensional context.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
description Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space H. We say that A is P-complementable if A−µP≥ 0 holds for some µ ∈ R. In this case we define IP (A) = max{µ ∈ R : A − µP ≥0}. As a tool for computing IP(A) we introduce a natural generalization of the Schur complement or shorted operator of A to f A to S = R(P ), denoted by Σ(A, P ). We give expressions and a characterization for IP(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator  Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair. We give some applications in the finite dimensional context.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108538
Massey, Pedro Gustavo; Stojanoff, Demetrio; Generalized Schur complements and P-complementable operators; Elsevier Science Inc; Linear Algebra and its Applications; 393; 12-2004; 299-318
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108538
identifier_str_mv Massey, Pedro Gustavo; Stojanoff, Demetrio; Generalized Schur complements and P-complementable operators; Elsevier Science Inc; Linear Algebra and its Applications; 393; 12-2004; 299-318
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379503006955
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083404393611264
score 13.22299