Generalized Schur complements and P-complementable operators

Autores
Massey, Pedro Gustavo; Stojanoff, Demetrio
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.
Facultad de Ciencias Exactas
Materia
Matemática
Completely positive maps
Hadamard product
Positive semidefinite operators
Shorted operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84639

id SEDICI_98fab0eb91c0df4d783a1cb9126368e7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84639
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Generalized Schur complements and P-complementable operatorsMassey, Pedro GustavoStojanoff, DemetrioMatemáticaCompletely positive mapsHadamard productPositive semidefinite operatorsShorted operatorLet A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.Facultad de Ciencias Exactas2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf299-318http://sedici.unlp.edu.ar/handle/10915/84639enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:06Zoai:sedici.unlp.edu.ar:10915/84639Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:06.835SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Generalized Schur complements and P-complementable operators
title Generalized Schur complements and P-complementable operators
spellingShingle Generalized Schur complements and P-complementable operators
Massey, Pedro Gustavo
Matemática
Completely positive maps
Hadamard product
Positive semidefinite operators
Shorted operator
title_short Generalized Schur complements and P-complementable operators
title_full Generalized Schur complements and P-complementable operators
title_fullStr Generalized Schur complements and P-complementable operators
title_full_unstemmed Generalized Schur complements and P-complementable operators
title_sort Generalized Schur complements and P-complementable operators
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Stojanoff, Demetrio
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Stojanoff, Demetrio
author_role author
author2 Stojanoff, Demetrio
author2_role author
dc.subject.none.fl_str_mv Matemática
Completely positive maps
Hadamard product
Positive semidefinite operators
Shorted operator
topic Matemática
Completely positive maps
Hadamard product
Positive semidefinite operators
Shorted operator
dc.description.none.fl_txt_mv Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.
Facultad de Ciencias Exactas
description Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84639
url http://sedici.unlp.edu.ar/handle/10915/84639
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
299-318
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783181010763776
score 12.727494