Generalized Schur complements and P-complementable operators
- Autores
- Massey, Pedro Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.
Facultad de Ciencias Exactas - Materia
-
Matemática
Completely positive maps
Hadamard product
Positive semidefinite operators
Shorted operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84639
Ver los metadatos del registro completo
id |
SEDICI_98fab0eb91c0df4d783a1cb9126368e7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84639 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Generalized Schur complements and P-complementable operatorsMassey, Pedro GustavoStojanoff, DemetrioMatemáticaCompletely positive mapsHadamard productPositive semidefinite operatorsShorted operatorLet A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.Facultad de Ciencias Exactas2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf299-318http://sedici.unlp.edu.ar/handle/10915/84639enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:06Zoai:sedici.unlp.edu.ar:10915/84639Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:06.835SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Generalized Schur complements and P-complementable operators |
title |
Generalized Schur complements and P-complementable operators |
spellingShingle |
Generalized Schur complements and P-complementable operators Massey, Pedro Gustavo Matemática Completely positive maps Hadamard product Positive semidefinite operators Shorted operator |
title_short |
Generalized Schur complements and P-complementable operators |
title_full |
Generalized Schur complements and P-complementable operators |
title_fullStr |
Generalized Schur complements and P-complementable operators |
title_full_unstemmed |
Generalized Schur complements and P-complementable operators |
title_sort |
Generalized Schur complements and P-complementable operators |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Stojanoff, Demetrio |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Stojanoff, Demetrio |
author_role |
author |
author2 |
Stojanoff, Demetrio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática Completely positive maps Hadamard product Positive semidefinite operators Shorted operator |
topic |
Matemática Completely positive maps Hadamard product Positive semidefinite operators Shorted operator |
dc.description.none.fl_txt_mv |
Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context. Facultad de Ciencias Exactas |
description |
Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84639 |
url |
http://sedici.unlp.edu.ar/handle/10915/84639 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.07.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 299-318 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783181010763776 |
score |
12.727494 |