Index of Hadamard multiplication by positive matrices II

Autores
Corach, Gustavo; Stojanoff, Demetrio
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Materia
HADAMARD PRODUCT
POSITIVE SEMIDEFINITE MATRICES
NORM INEQUALITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110894

id CONICETDig_9ea474c673079edbacd750d807c5a721
oai_identifier_str oai:ri.conicet.gov.ar:11336/110894
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Index of Hadamard multiplication by positive matrices IICorach, GustavoStojanoff, DemetrioHADAMARD PRODUCTPOSITIVE SEMIDEFINITE MATRICESNORM INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier Science Inc2001-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110894Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-5170024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0024-3795(01)00306-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:29Zoai:ri.conicet.gov.ar:11336/110894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:29.572CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Index of Hadamard multiplication by positive matrices II
title Index of Hadamard multiplication by positive matrices II
spellingShingle Index of Hadamard multiplication by positive matrices II
Corach, Gustavo
HADAMARD PRODUCT
POSITIVE SEMIDEFINITE MATRICES
NORM INEQUALITIES
title_short Index of Hadamard multiplication by positive matrices II
title_full Index of Hadamard multiplication by positive matrices II
title_fullStr Index of Hadamard multiplication by positive matrices II
title_full_unstemmed Index of Hadamard multiplication by positive matrices II
title_sort Index of Hadamard multiplication by positive matrices II
dc.creator.none.fl_str_mv Corach, Gustavo
Stojanoff, Demetrio
author Corach, Gustavo
author_facet Corach, Gustavo
Stojanoff, Demetrio
author_role author
author2 Stojanoff, Demetrio
author2_role author
dc.subject.none.fl_str_mv HADAMARD PRODUCT
POSITIVE SEMIDEFINITE MATRICES
NORM INEQUALITIES
topic HADAMARD PRODUCT
POSITIVE SEMIDEFINITE MATRICES
NORM INEQUALITIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
description For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.
publishDate 2001
dc.date.none.fl_str_mv 2001-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110894
Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110894
identifier_str_mv Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0024-3795(01)00306-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269802354180096
score 13.13397