Index of Hadamard multiplication by positive matrices II
- Autores
- Corach, Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
HADAMARD PRODUCT
POSITIVE SEMIDEFINITE MATRICES
NORM INEQUALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110894
Ver los metadatos del registro completo
| id |
CONICETDig_9ea474c673079edbacd750d807c5a721 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110894 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Index of Hadamard multiplication by positive matrices IICorach, GustavoStojanoff, DemetrioHADAMARD PRODUCTPOSITIVE SEMIDEFINITE MATRICESNORM INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier Science Inc2001-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110894Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-5170024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0024-3795(01)00306-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:23Zoai:ri.conicet.gov.ar:11336/110894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:23.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Index of Hadamard multiplication by positive matrices II |
| title |
Index of Hadamard multiplication by positive matrices II |
| spellingShingle |
Index of Hadamard multiplication by positive matrices II Corach, Gustavo HADAMARD PRODUCT POSITIVE SEMIDEFINITE MATRICES NORM INEQUALITIES |
| title_short |
Index of Hadamard multiplication by positive matrices II |
| title_full |
Index of Hadamard multiplication by positive matrices II |
| title_fullStr |
Index of Hadamard multiplication by positive matrices II |
| title_full_unstemmed |
Index of Hadamard multiplication by positive matrices II |
| title_sort |
Index of Hadamard multiplication by positive matrices II |
| dc.creator.none.fl_str_mv |
Corach, Gustavo Stojanoff, Demetrio |
| author |
Corach, Gustavo |
| author_facet |
Corach, Gustavo Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Stojanoff, Demetrio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
HADAMARD PRODUCT POSITIVE SEMIDEFINITE MATRICES NORM INEQUALITIES |
| topic |
HADAMARD PRODUCT POSITIVE SEMIDEFINITE MATRICES NORM INEQUALITIES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0. |
| publishDate |
2001 |
| dc.date.none.fl_str_mv |
2001-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110894 Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517 0024-3795 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/110894 |
| identifier_str_mv |
Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517 0024-3795 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/S0024-3795(01)00306-8 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
| publisher.none.fl_str_mv |
Elsevier Science Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598179155542016 |
| score |
12.976206 |