Higher-order boundary regularity estimates for nonlocal parabolic equations
- Autores
- Ros Oton, Xavier; Vivas, Hernán Agustín
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.
Fil: Ros Oton, Xavier. Universitat Zurich; Suiza
Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Boundary regularity
Nonlocal parabolic equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100756
Ver los metadatos del registro completo
id |
CONICETDig_bc16e345981428b680df222d3628807c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100756 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Higher-order boundary regularity estimates for nonlocal parabolic equationsRos Oton, XavierVivas, Hernán AgustínBoundary regularityNonlocal parabolic equationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.Fil: Ros Oton, Xavier. Universitat Zurich; SuizaFil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/100756Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-200944-2669CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-018-1399-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00526-018-1399-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:41:31Zoai:ri.conicet.gov.ar:11336/100756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:41:32.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
title |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
spellingShingle |
Higher-order boundary regularity estimates for nonlocal parabolic equations Ros Oton, Xavier Boundary regularity Nonlocal parabolic equations |
title_short |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
title_full |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
title_fullStr |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
title_full_unstemmed |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
title_sort |
Higher-order boundary regularity estimates for nonlocal parabolic equations |
dc.creator.none.fl_str_mv |
Ros Oton, Xavier Vivas, Hernán Agustín |
author |
Ros Oton, Xavier |
author_facet |
Ros Oton, Xavier Vivas, Hernán Agustín |
author_role |
author |
author2 |
Vivas, Hernán Agustín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Boundary regularity Nonlocal parabolic equations |
topic |
Boundary regularity Nonlocal parabolic equations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains. Fil: Ros Oton, Xavier. Universitat Zurich; Suiza Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100756 Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-20 0944-2669 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100756 |
identifier_str_mv |
Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-20 0944-2669 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-018-1399-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00526-018-1399-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843605862784958464 |
score |
13.146683 |