Higher-order boundary regularity estimates for nonlocal parabolic equations

Autores
Ros Oton, Xavier; Vivas, Hernán Agustín
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.
Fil: Ros Oton, Xavier. Universitat Zurich; Suiza
Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Boundary regularity
Nonlocal parabolic equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100756

id CONICETDig_bc16e345981428b680df222d3628807c
oai_identifier_str oai:ri.conicet.gov.ar:11336/100756
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Higher-order boundary regularity estimates for nonlocal parabolic equationsRos Oton, XavierVivas, Hernán AgustínBoundary regularityNonlocal parabolic equationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.Fil: Ros Oton, Xavier. Universitat Zurich; SuizaFil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/100756Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-200944-2669CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-018-1399-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00526-018-1399-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:41:31Zoai:ri.conicet.gov.ar:11336/100756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:41:32.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Higher-order boundary regularity estimates for nonlocal parabolic equations
title Higher-order boundary regularity estimates for nonlocal parabolic equations
spellingShingle Higher-order boundary regularity estimates for nonlocal parabolic equations
Ros Oton, Xavier
Boundary regularity
Nonlocal parabolic equations
title_short Higher-order boundary regularity estimates for nonlocal parabolic equations
title_full Higher-order boundary regularity estimates for nonlocal parabolic equations
title_fullStr Higher-order boundary regularity estimates for nonlocal parabolic equations
title_full_unstemmed Higher-order boundary regularity estimates for nonlocal parabolic equations
title_sort Higher-order boundary regularity estimates for nonlocal parabolic equations
dc.creator.none.fl_str_mv Ros Oton, Xavier
Vivas, Hernán Agustín
author Ros Oton, Xavier
author_facet Ros Oton, Xavier
Vivas, Hernán Agustín
author_role author
author2 Vivas, Hernán Agustín
author2_role author
dc.subject.none.fl_str_mv Boundary regularity
Nonlocal parabolic equations
topic Boundary regularity
Nonlocal parabolic equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.
Fil: Ros Oton, Xavier. Universitat Zurich; Suiza
Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. University of Texas at Austin; Estados Unidos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form ∂tu- Lu= f(t, x) in I× Ω where I⊂ R, Ω ⊂ Rn and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian (- Δ) s, s∈ (0 , 1). Our main result establishes that, if f is Cγ is space and Cγ / 2 s in time, and Ω is a C2 , γ domain, then u/ ds is Cs + γ up to the boundary in space and u is C1 + γ / 2 s up the boundary in time, where d is the distance to ∂Ω. This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in C∞ domains.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100756
Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-20
0944-2669
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100756
identifier_str_mv Ros Oton, Xavier; Vivas, Hernán Agustín; Higher-order boundary regularity estimates for nonlocal parabolic equations; Springer; Calculus Of Variations And Partial Differential Equations; 57; 5; 10-2018; 1-20
0944-2669
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00526-018-1399-6
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00526-018-1399-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843605862784958464
score 13.146683