Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

Autores
Rodolfo Casana; Sourrouille, Lucas
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω 1 (| φ |) and ω (| φ |), which split the kinetic term of the Higgs field, | D μ φ | 2 → ω 1 (| φ |) | D 0 φ | 2 - ω (| φ |) | D k φ | 2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω (| φ |) ∝ β | φ | 2 β - 2 with β ≥ 1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω 1 (| φ |) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual | φ | 6 -vortex solutions have been analyzed from both theoretical and numerical point of view.
Fil: Rodolfo Casana. Universidade Federal do Maranhão; Brasil
Fil: Sourrouille, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional Arturo Jauretche; Argentina
Materia
Soluciones Solitónicas
Teorías de gauge de Chern-Simons
Teorías generalizadas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85823

id CONICETDig_bac8427612508f60e0ebce1f57795877
oai_identifier_str oai:ri.conicet.gov.ar:11336/85823
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz CovarianceRodolfo CasanaSourrouille, LucasSoluciones SolitónicasTeorías de gauge de Chern-SimonsTeorías generalizadashttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω 1 (| φ |) and ω (| φ |), which split the kinetic term of the Higgs field, | D μ φ | 2 → ω 1 (| φ |) | D 0 φ | 2 - ω (| φ |) | D k φ | 2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω (| φ |) ∝ β | φ | 2 β - 2 with β ≥ 1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω 1 (| φ |) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual | φ | 6 -vortex solutions have been analyzed from both theoretical and numerical point of view.Fil: Rodolfo Casana. Universidade Federal do Maranhão; BrasilFil: Sourrouille, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional Arturo Jauretche; ArgentinaHindawi Publishing Corporation2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85823Rodolfo Casana; Sourrouille, Lucas; Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance; Hindawi Publishing Corporation; Advances in High Energy Physics; 2016; 7-2016; 1-81687-73571687-7365CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ahep/2016/5315649/cta/info:eu-repo/semantics/altIdentifier/doi/10.1155/2016/5315649info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:14Zoai:ri.conicet.gov.ar:11336/85823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:14.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
title Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
spellingShingle Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
Rodolfo Casana
Soluciones Solitónicas
Teorías de gauge de Chern-Simons
Teorías generalizadas
title_short Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
title_full Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
title_fullStr Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
title_full_unstemmed Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
title_sort Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance
dc.creator.none.fl_str_mv Rodolfo Casana
Sourrouille, Lucas
author Rodolfo Casana
author_facet Rodolfo Casana
Sourrouille, Lucas
author_role author
author2 Sourrouille, Lucas
author2_role author
dc.subject.none.fl_str_mv Soluciones Solitónicas
Teorías de gauge de Chern-Simons
Teorías generalizadas
topic Soluciones Solitónicas
Teorías de gauge de Chern-Simons
Teorías generalizadas
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω 1 (| φ |) and ω (| φ |), which split the kinetic term of the Higgs field, | D μ φ | 2 → ω 1 (| φ |) | D 0 φ | 2 - ω (| φ |) | D k φ | 2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω (| φ |) ∝ β | φ | 2 β - 2 with β ≥ 1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω 1 (| φ |) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual | φ | 6 -vortex solutions have been analyzed from both theoretical and numerical point of view.
Fil: Rodolfo Casana. Universidade Federal do Maranhão; Brasil
Fil: Sourrouille, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional Arturo Jauretche; Argentina
description We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω 1 (| φ |) and ω (| φ |), which split the kinetic term of the Higgs field, | D μ φ | 2 → ω 1 (| φ |) | D 0 φ | 2 - ω (| φ |) | D k φ | 2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω (| φ |) ∝ β | φ | 2 β - 2 with β ≥ 1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω 1 (| φ |) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual | φ | 6 -vortex solutions have been analyzed from both theoretical and numerical point of view.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85823
Rodolfo Casana; Sourrouille, Lucas; Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance; Hindawi Publishing Corporation; Advances in High Energy Physics; 2016; 7-2016; 1-8
1687-7357
1687-7365
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85823
identifier_str_mv Rodolfo Casana; Sourrouille, Lucas; Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance; Hindawi Publishing Corporation; Advances in High Energy Physics; 2016; 7-2016; 1-8
1687-7357
1687-7365
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ahep/2016/5315649/cta/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2016/5315649
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269145455919104
score 13.13397