Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor

Autores
Chen, Shouxin; Han, Xiaosen; Lozano, Gustavo; Schaposnik, Fidel Arturo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Chern-Simons-Higgs equations, BPS equations, topological solutions, doubly periodic solutions, existence theorems
Física
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/77549

id SEDICI_fd5efae3f4034224a4995028b8ca0a32
oai_identifier_str oai:sedici.unlp.edu.ar:10915/77549
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavorChen, ShouxinHan, XiaosenLozano, GustavoSchaposnik, Fidel ArturoCiencias ExactasChern-Simons-Higgs equations, BPS equations, topological solutions, doubly periodic solutions, existence theoremsFísicaIn this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/77549enginfo:eu-repo/semantics/altIdentifier/hdl/11746/4203info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:05:49Zoai:sedici.unlp.edu.ar:10915/77549Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:05:49.909SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
title Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
spellingShingle Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
Chen, Shouxin
Ciencias Exactas
Chern-Simons-Higgs equations, BPS equations, topological solutions, doubly periodic solutions, existence theorems
Física
title_short Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
title_full Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
title_fullStr Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
title_full_unstemmed Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
title_sort Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
dc.creator.none.fl_str_mv Chen, Shouxin
Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author Chen, Shouxin
author_facet Chen, Shouxin
Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author_role author
author2 Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Chern-Simons-Higgs equations, BPS equations, topological solutions, doubly periodic solutions, existence theorems
Física
topic Ciencias Exactas
Chern-Simons-Higgs equations, BPS equations, topological solutions, doubly periodic solutions, existence theorems
Física
dc.description.none.fl_txt_mv In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
Facultad de Ciencias Exactas
description In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/77549
url http://sedici.unlp.edu.ar/handle/10915/77549
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/hdl/11746/4203
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064112944021504
score 13.22299