Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
- Autores
- Chen, Shouxin; Han, Xiaosen; Lozano, Gustavo; Schaposnik, Fidel Arturo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
- Materia
-
Ciencias Físicas
Chern–Simons–Higgs equations
BPS equations
Topological solutions
Doubly periodic solutions
Existence theorems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/4203
Ver los metadatos del registro completo
id |
CICBA_245f3bef171926bac610795f6049c3ce |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/4203 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavorChen, ShouxinHan, XiaosenLozano, GustavoSchaposnik, Fidel ArturoCiencias FísicasChern–Simons–Higgs equationsBPS equationsTopological solutionsDoubly periodic solutionsExistence theoremsIn this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.Elsevier2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4203enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-16T09:27:11Zoai:digital.cic.gba.gob.ar:11746/4203Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-16 09:27:12.194CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
title |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
spellingShingle |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor Chen, Shouxin Ciencias Físicas Chern–Simons–Higgs equations BPS equations Topological solutions Doubly periodic solutions Existence theorems |
title_short |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
title_full |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
title_fullStr |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
title_full_unstemmed |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
title_sort |
Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor |
dc.creator.none.fl_str_mv |
Chen, Shouxin Han, Xiaosen Lozano, Gustavo Schaposnik, Fidel Arturo |
author |
Chen, Shouxin |
author_facet |
Chen, Shouxin Han, Xiaosen Lozano, Gustavo Schaposnik, Fidel Arturo |
author_role |
author |
author2 |
Han, Xiaosen Lozano, Gustavo Schaposnik, Fidel Arturo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Físicas Chern–Simons–Higgs equations BPS equations Topological solutions Doubly periodic solutions Existence theorems |
topic |
Ciencias Físicas Chern–Simons–Higgs equations BPS equations Topological solutions Doubly periodic solutions Existence theorems |
dc.description.none.fl_txt_mv |
In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges. |
description |
In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/4203 |
url |
https://digital.cic.gba.gob.ar/handle/11746/4203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1846142617446776832 |
score |
12.712165 |