Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor

Autores
Chen, Shouxin; Han, Xiaosen; Lozano, Gustavo; Schaposnik, Fidel Arturo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
Materia
Ciencias Físicas
Chern–Simons–Higgs equations
BPS equations
Topological solutions
Doubly periodic solutions
Existence theorems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/4203

id CICBA_245f3bef171926bac610795f6049c3ce
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/4203
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavorChen, ShouxinHan, XiaosenLozano, GustavoSchaposnik, Fidel ArturoCiencias FísicasChern–Simons–Higgs equationsBPS equationsTopological solutionsDoubly periodic solutionsExistence theoremsIn this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.Elsevier2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4203enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-16T09:27:11Zoai:digital.cic.gba.gob.ar:11746/4203Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-16 09:27:12.194CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
title Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
spellingShingle Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
Chen, Shouxin
Ciencias Físicas
Chern–Simons–Higgs equations
BPS equations
Topological solutions
Doubly periodic solutions
Existence theorems
title_short Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
title_full Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
title_fullStr Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
title_full_unstemmed Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
title_sort Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor
dc.creator.none.fl_str_mv Chen, Shouxin
Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author Chen, Shouxin
author_facet Chen, Shouxin
Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author_role author
author2 Han, Xiaosen
Lozano, Gustavo
Schaposnik, Fidel Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Físicas
Chern–Simons–Higgs equations
BPS equations
Topological solutions
Doubly periodic solutions
Existence theorems
topic Ciencias Físicas
Chern–Simons–Higgs equations
BPS equations
Topological solutions
Doubly periodic solutions
Existence theorems
dc.description.none.fl_txt_mv In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
description In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/4203
url https://digital.cic.gba.gob.ar/handle/11746/4203
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2015.03.037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1846142617446776832
score 12.712165