Holographic entanglement entropy inequalities beyond strong subadditivity

Autores
Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos
Fil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
ADS-CFT CORRESPONDENCE
RENORMALIZATION GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/218087

id CONICETDig_b8dd807507c758f4f0799336a9d24628
oai_identifier_str oai:ri.conicet.gov.ar:11336/218087
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Holographic entanglement entropy inequalities beyond strong subadditivityDaguerre, LucasGinzburg, MatiasTorroba, GonzaloADS-CFT CORRESPONDENCERENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.Fil: Daguerre, Lucas. University of California at Davis; Estados UnidosFil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaSpringer2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218087Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-301029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2022)199info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2022)199info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:53Zoai:ri.conicet.gov.ar:11336/218087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:53.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Holographic entanglement entropy inequalities beyond strong subadditivity
title Holographic entanglement entropy inequalities beyond strong subadditivity
spellingShingle Holographic entanglement entropy inequalities beyond strong subadditivity
Daguerre, Lucas
ADS-CFT CORRESPONDENCE
RENORMALIZATION GROUP
title_short Holographic entanglement entropy inequalities beyond strong subadditivity
title_full Holographic entanglement entropy inequalities beyond strong subadditivity
title_fullStr Holographic entanglement entropy inequalities beyond strong subadditivity
title_full_unstemmed Holographic entanglement entropy inequalities beyond strong subadditivity
title_sort Holographic entanglement entropy inequalities beyond strong subadditivity
dc.creator.none.fl_str_mv Daguerre, Lucas
Ginzburg, Matias
Torroba, Gonzalo
author Daguerre, Lucas
author_facet Daguerre, Lucas
Ginzburg, Matias
Torroba, Gonzalo
author_role author
author2 Ginzburg, Matias
Torroba, Gonzalo
author2_role author
author
dc.subject.none.fl_str_mv ADS-CFT CORRESPONDENCE
RENORMALIZATION GROUP
topic ADS-CFT CORRESPONDENCE
RENORMALIZATION GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos
Fil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/218087
Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-30
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/218087
identifier_str_mv Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-30
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2022)199
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2022)199
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082610877431808
score 13.221938