Holographic entanglement entropy inequalities beyond strong subadditivity
- Autores
- Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos
Fil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
ADS-CFT CORRESPONDENCE
RENORMALIZATION GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218087
Ver los metadatos del registro completo
id |
CONICETDig_b8dd807507c758f4f0799336a9d24628 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218087 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Holographic entanglement entropy inequalities beyond strong subadditivityDaguerre, LucasGinzburg, MatiasTorroba, GonzaloADS-CFT CORRESPONDENCERENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four.Fil: Daguerre, Lucas. University of California at Davis; Estados UnidosFil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaSpringer2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218087Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-301029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2022)199info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2022)199info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:53Zoai:ri.conicet.gov.ar:11336/218087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:53.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Holographic entanglement entropy inequalities beyond strong subadditivity |
title |
Holographic entanglement entropy inequalities beyond strong subadditivity |
spellingShingle |
Holographic entanglement entropy inequalities beyond strong subadditivity Daguerre, Lucas ADS-CFT CORRESPONDENCE RENORMALIZATION GROUP |
title_short |
Holographic entanglement entropy inequalities beyond strong subadditivity |
title_full |
Holographic entanglement entropy inequalities beyond strong subadditivity |
title_fullStr |
Holographic entanglement entropy inequalities beyond strong subadditivity |
title_full_unstemmed |
Holographic entanglement entropy inequalities beyond strong subadditivity |
title_sort |
Holographic entanglement entropy inequalities beyond strong subadditivity |
dc.creator.none.fl_str_mv |
Daguerre, Lucas Ginzburg, Matias Torroba, Gonzalo |
author |
Daguerre, Lucas |
author_facet |
Daguerre, Lucas Ginzburg, Matias Torroba, Gonzalo |
author_role |
author |
author2 |
Ginzburg, Matias Torroba, Gonzalo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ADS-CFT CORRESPONDENCE RENORMALIZATION GROUP |
topic |
ADS-CFT CORRESPONDENCE RENORMALIZATION GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four. Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos Fil: Ginzburg, Matias. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
description |
The vacuum entanglement entropy in quantum field theory provides nonperturbative information about renormalization group flows. Most studies so far have focused on the universal terms, related to the Weyl anomaly in even space-time dimensions, and the sphere free energy F in odd dimensions. In this work we study the entanglement entropy on a sphere of radius R in a large radius limit, for field theories with gravity duals. At large radius the entropy admits a geometric expansion in powers of R; the leading term is the well-known area term, and we also consider the subleading contributions. These terms can be physical, they contain information about the full renormalization group flow, and they reproduce known monotonicity theorems in particular cases. We set up an efficient method for calculating them using the Hamilton-Jacobi equation for the holographic entanglement entropy. We first reproduce the known result for the area term, the coefficient multiplying Rd−2 in the entanglement entropy. We then obtain the holographic result for the Rd−4 term and establish its irreversibility. Finally, we derive the Rd−6 coefficient for holographic theories, and also establish its irreversibility. This result goes beyond what has been proved in quantum field theory based on strong subadditivity, and hints towards new methods for analyzing the monotonicity of the renormalization group in space-time dimensions bigger than four. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218087 Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-30 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218087 |
identifier_str_mv |
Daguerre, Lucas; Ginzburg, Matias; Torroba, Gonzalo; Holographic entanglement entropy inequalities beyond strong subadditivity; Springer; Journal of High Energy Physics; 10; 10-2022; 1-30 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2022)199 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2022)199 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082610877431808 |
score |
13.221938 |