Boundary-to-bulk maps for AdS causal wedges and RG flow

Autores
del Grosso, Nicolas Francisco; Garbarz, Alan Nicolás; Palau, Gabriel; Pérez Nadal, Guillem
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆− are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.
Fil: del Grosso, Nicolas Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Garbarz, Alan Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Palau, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Pérez Nadal, Guillem. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148139

id CONICETDig_78933a0815ada6a64fe893449e50255e
oai_identifier_str oai:ri.conicet.gov.ar:11336/148139
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boundary-to-bulk maps for AdS causal wedges and RG flowdel Grosso, Nicolas FranciscoGarbarz, Alan NicolásPalau, GabrielPérez Nadal, GuillemADS-CFT CORRESPONDENCECONFORMAL FIELD THEORYRENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆− are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.Fil: del Grosso, Nicolas Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Garbarz, Alan Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Palau, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Pérez Nadal, Guillem. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaSpringer Verlag Berlín2019-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148139del Grosso, Nicolas Francisco; Garbarz, Alan Nicolás; Palau, Gabriel; Pérez Nadal, Guillem; Boundary-to-bulk maps for AdS causal wedges and RG flow; Springer Verlag Berlín; Journal of High Energy Physics; 2019; 10; 9-10-2019; 1-291029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2019)135info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2019)135info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:42:30Zoai:ri.conicet.gov.ar:11336/148139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:42:30.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boundary-to-bulk maps for AdS causal wedges and RG flow
title Boundary-to-bulk maps for AdS causal wedges and RG flow
spellingShingle Boundary-to-bulk maps for AdS causal wedges and RG flow
del Grosso, Nicolas Francisco
ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
title_short Boundary-to-bulk maps for AdS causal wedges and RG flow
title_full Boundary-to-bulk maps for AdS causal wedges and RG flow
title_fullStr Boundary-to-bulk maps for AdS causal wedges and RG flow
title_full_unstemmed Boundary-to-bulk maps for AdS causal wedges and RG flow
title_sort Boundary-to-bulk maps for AdS causal wedges and RG flow
dc.creator.none.fl_str_mv del Grosso, Nicolas Francisco
Garbarz, Alan Nicolás
Palau, Gabriel
Pérez Nadal, Guillem
author del Grosso, Nicolas Francisco
author_facet del Grosso, Nicolas Francisco
Garbarz, Alan Nicolás
Palau, Gabriel
Pérez Nadal, Guillem
author_role author
author2 Garbarz, Alan Nicolás
Palau, Gabriel
Pérez Nadal, Guillem
author2_role author
author
author
dc.subject.none.fl_str_mv ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
topic ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆− are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.
Fil: del Grosso, Nicolas Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Garbarz, Alan Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Palau, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Pérez Nadal, Guillem. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆− are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148139
del Grosso, Nicolas Francisco; Garbarz, Alan Nicolás; Palau, Gabriel; Pérez Nadal, Guillem; Boundary-to-bulk maps for AdS causal wedges and RG flow; Springer Verlag Berlín; Journal of High Energy Physics; 2019; 10; 9-10-2019; 1-29
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148139
identifier_str_mv del Grosso, Nicolas Francisco; Garbarz, Alan Nicolás; Palau, Gabriel; Pérez Nadal, Guillem; Boundary-to-bulk maps for AdS causal wedges and RG flow; Springer Verlag Berlín; Journal of High Energy Physics; 2019; 10; 9-10-2019; 1-29
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2019)135
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2019)135
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Verlag Berlín
publisher.none.fl_str_mv Springer Verlag Berlín
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426342878969856
score 13.10058