Conformal Bounds in Three Dimensions from Entanglement Entropy

Autores
Bueno, Pablo; Casini, Horacio German; Lasso Andino, Oscar; Moreno, Javier
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds. In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3Þ ≃ 0.14887 for general CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.
Fil: Bueno, Pablo. Universidad de Barcelona; España
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Lasso Andino, Oscar. Universidad de Las Américas; Ecuador
Fil: Moreno, Javier. University of Haifa; Israel. Technion - Israel Institute of Technology; Israel
Materia
Conformal field theories
Renormalization group
CFT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231713

id CONICETDig_5d025f1f4df2dcca3359cf410ae28766
oai_identifier_str oai:ri.conicet.gov.ar:11336/231713
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Conformal Bounds in Three Dimensions from Entanglement EntropyBueno, PabloCasini, Horacio GermanLasso Andino, OscarMoreno, JavierConformal field theoriesRenormalization groupCFThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds. In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3Þ ≃ 0.14887 for general CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.Fil: Bueno, Pablo. Universidad de Barcelona; EspañaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Lasso Andino, Oscar. Universidad de Las Américas; EcuadorFil: Moreno, Javier. University of Haifa; Israel. Technion - Israel Institute of Technology; IsraelAmerican Physical Society2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231713Bueno, Pablo; Casini, Horacio German; Lasso Andino, Oscar; Moreno, Javier; Conformal Bounds in Three Dimensions from Entanglement Entropy; American Physical Society; Physical Review Letters; 131; 17; 3-2023; 1-71079-7114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.171601info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.131.171601info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:07Zoai:ri.conicet.gov.ar:11336/231713instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:08.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Conformal Bounds in Three Dimensions from Entanglement Entropy
title Conformal Bounds in Three Dimensions from Entanglement Entropy
spellingShingle Conformal Bounds in Three Dimensions from Entanglement Entropy
Bueno, Pablo
Conformal field theories
Renormalization group
CFT
title_short Conformal Bounds in Three Dimensions from Entanglement Entropy
title_full Conformal Bounds in Three Dimensions from Entanglement Entropy
title_fullStr Conformal Bounds in Three Dimensions from Entanglement Entropy
title_full_unstemmed Conformal Bounds in Three Dimensions from Entanglement Entropy
title_sort Conformal Bounds in Three Dimensions from Entanglement Entropy
dc.creator.none.fl_str_mv Bueno, Pablo
Casini, Horacio German
Lasso Andino, Oscar
Moreno, Javier
author Bueno, Pablo
author_facet Bueno, Pablo
Casini, Horacio German
Lasso Andino, Oscar
Moreno, Javier
author_role author
author2 Casini, Horacio German
Lasso Andino, Oscar
Moreno, Javier
author2_role author
author
author
dc.subject.none.fl_str_mv Conformal field theories
Renormalization group
CFT
topic Conformal field theories
Renormalization group
CFT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds. In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3Þ ≃ 0.14887 for general CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.
Fil: Bueno, Pablo. Universidad de Barcelona; España
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Lasso Andino, Oscar. Universidad de Las Américas; Ecuador
Fil: Moreno, Javier. University of Haifa; Israel. Technion - Israel Institute of Technology; Israel
description The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds. In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3Þ ≃ 0.14887 for general CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231713
Bueno, Pablo; Casini, Horacio German; Lasso Andino, Oscar; Moreno, Javier; Conformal Bounds in Three Dimensions from Entanglement Entropy; American Physical Society; Physical Review Letters; 131; 17; 3-2023; 1-7
1079-7114
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231713
identifier_str_mv Bueno, Pablo; Casini, Horacio German; Lasso Andino, Oscar; Moreno, Javier; Conformal Bounds in Three Dimensions from Entanglement Entropy; American Physical Society; Physical Review Letters; 131; 17; 3-2023; 1-7
1079-7114
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.171601
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.131.171601
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614428362801152
score 13.070432