All the entropies on the light-cone
- Autores
 - Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo
 - Año de publicación
 - 2018
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
 - 
            
        ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/97690
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_b3d31ee6069dcfb27c95f4b7cb360ce1 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/97690 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                All the entropies on the light-coneCasini, Horacio GermanTesté Lino, EduardoTorroba, GonzaloADS-CFT CORRESPONDENCECONFORMAL FIELD THEORYRENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaSpringer2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97690Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; All the entropies on the light-cone; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-421126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29005info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)005info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.04278info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:24:02Zoai:ri.conicet.gov.ar:11336/97690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:24:02.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                All the entropies on the light-cone | 
      
| title | 
                                All the entropies on the light-cone | 
      
| spellingShingle | 
                                All the entropies on the light-cone Casini, Horacio German ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY RENORMALIZATION GROUP  | 
      
| title_short | 
                                All the entropies on the light-cone | 
      
| title_full | 
                                All the entropies on the light-cone | 
      
| title_fullStr | 
                                All the entropies on the light-cone | 
      
| title_full_unstemmed | 
                                All the entropies on the light-cone | 
      
| title_sort | 
                                All the entropies on the light-cone | 
      
| dc.creator.none.fl_str_mv | 
                                Casini, Horacio German Testé Lino, Eduardo Torroba, Gonzalo  | 
      
| author | 
                                Casini, Horacio German | 
      
| author_facet | 
                                Casini, Horacio German Testé Lino, Eduardo Torroba, Gonzalo  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Testé Lino, Eduardo Torroba, Gonzalo  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY RENORMALIZATION GROUP  | 
      
| topic | 
                                ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY RENORMALIZATION GROUP  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions. Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  | 
      
| description | 
                                We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions. | 
      
| publishDate | 
                                2018 | 
      
| dc.date.none.fl_str_mv | 
                                2018-05 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/97690 Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; All the entropies on the light-cone; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-42 1126-6708 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/97690 | 
      
| identifier_str_mv | 
                                Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; All the entropies on the light-cone; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-42 1126-6708 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29005 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)005 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.04278  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Springer | 
      
| publisher.none.fl_str_mv | 
                                Springer | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847427142040682496 | 
      
| score | 
                                12.589754 |