Model predictive control to ensure high quality hydrogen production for fuel cells
- Autores
- Rullo, Pablo Gabriel; Nieto Degliuomini, Lucas; García, Maximiliano Pablo; Basualdo, Marta Susana
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a conventional plant wide control of a hydrogen production process from bioethanol is analyzed. The objective is to determine if the carbon monoxide (CO), in the produced hydrogen, exceeds the Proton Exchange Membrane Fuel Cell quality requirement of 10 ppm. Commercial sensors that meet those process conditions at high temperature are not easily available. Then, the development of two soft sensors, based on neural network, for online estimation of CO concentration in the H2 stream is presented. Higher CO concentration than allowed is detected in the fuel cell feeding. Strong interaction effects among the control loops around the last reactor, are found. Based on this, two model predictive control technologies are tested and compared in this interacted zone, in order to improve the disturbance rejection and satisfy the H2 expected quality. An exigent disturbance profile was used for simulating dynamically the complete process behavior.
Fil: Rullo, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Nieto Degliuomini, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: García, Maximiliano Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Basualdo, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional; Argentina - Materia
-
Model Predictive Control
Bioethanol Processor System
Co Soft Sensor
Pem Quality Hydrogen Production - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32983
Ver los metadatos del registro completo
| id |
CONICETDig_b78c3bc88e3725351a80ef6048ce7f60 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32983 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Model predictive control to ensure high quality hydrogen production for fuel cellsRullo, Pablo GabrielNieto Degliuomini, LucasGarcía, Maximiliano PabloBasualdo, Marta SusanaModel Predictive ControlBioethanol Processor SystemCo Soft SensorPem Quality Hydrogen Productionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, a conventional plant wide control of a hydrogen production process from bioethanol is analyzed. The objective is to determine if the carbon monoxide (CO), in the produced hydrogen, exceeds the Proton Exchange Membrane Fuel Cell quality requirement of 10 ppm. Commercial sensors that meet those process conditions at high temperature are not easily available. Then, the development of two soft sensors, based on neural network, for online estimation of CO concentration in the H2 stream is presented. Higher CO concentration than allowed is detected in the fuel cell feeding. Strong interaction effects among the control loops around the last reactor, are found. Based on this, two model predictive control technologies are tested and compared in this interacted zone, in order to improve the disturbance rejection and satisfy the H2 expected quality. An exigent disturbance profile was used for simulating dynamically the complete process behavior.Fil: Rullo, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Nieto Degliuomini, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: García, Maximiliano Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Basualdo, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional; ArgentinaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32983Basualdo, Marta Susana; García, Maximiliano Pablo; Nieto Degliuomini, Lucas; Rullo, Pablo Gabriel; Model predictive control to ensure high quality hydrogen production for fuel cells; Elsevier; International Journal of Hydrogen Energy; 39; 16; 1-2014; 8635-86490360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2013.12.069info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913030048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:36:32Zoai:ri.conicet.gov.ar:11336/32983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:36:32.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| title |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| spellingShingle |
Model predictive control to ensure high quality hydrogen production for fuel cells Rullo, Pablo Gabriel Model Predictive Control Bioethanol Processor System Co Soft Sensor Pem Quality Hydrogen Production |
| title_short |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| title_full |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| title_fullStr |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| title_full_unstemmed |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| title_sort |
Model predictive control to ensure high quality hydrogen production for fuel cells |
| dc.creator.none.fl_str_mv |
Rullo, Pablo Gabriel Nieto Degliuomini, Lucas García, Maximiliano Pablo Basualdo, Marta Susana |
| author |
Rullo, Pablo Gabriel |
| author_facet |
Rullo, Pablo Gabriel Nieto Degliuomini, Lucas García, Maximiliano Pablo Basualdo, Marta Susana |
| author_role |
author |
| author2 |
Nieto Degliuomini, Lucas García, Maximiliano Pablo Basualdo, Marta Susana |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Model Predictive Control Bioethanol Processor System Co Soft Sensor Pem Quality Hydrogen Production |
| topic |
Model Predictive Control Bioethanol Processor System Co Soft Sensor Pem Quality Hydrogen Production |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In this work, a conventional plant wide control of a hydrogen production process from bioethanol is analyzed. The objective is to determine if the carbon monoxide (CO), in the produced hydrogen, exceeds the Proton Exchange Membrane Fuel Cell quality requirement of 10 ppm. Commercial sensors that meet those process conditions at high temperature are not easily available. Then, the development of two soft sensors, based on neural network, for online estimation of CO concentration in the H2 stream is presented. Higher CO concentration than allowed is detected in the fuel cell feeding. Strong interaction effects among the control loops around the last reactor, are found. Based on this, two model predictive control technologies are tested and compared in this interacted zone, in order to improve the disturbance rejection and satisfy the H2 expected quality. An exigent disturbance profile was used for simulating dynamically the complete process behavior. Fil: Rullo, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Nieto Degliuomini, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: García, Maximiliano Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Basualdo, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional; Argentina |
| description |
In this work, a conventional plant wide control of a hydrogen production process from bioethanol is analyzed. The objective is to determine if the carbon monoxide (CO), in the produced hydrogen, exceeds the Proton Exchange Membrane Fuel Cell quality requirement of 10 ppm. Commercial sensors that meet those process conditions at high temperature are not easily available. Then, the development of two soft sensors, based on neural network, for online estimation of CO concentration in the H2 stream is presented. Higher CO concentration than allowed is detected in the fuel cell feeding. Strong interaction effects among the control loops around the last reactor, are found. Based on this, two model predictive control technologies are tested and compared in this interacted zone, in order to improve the disturbance rejection and satisfy the H2 expected quality. An exigent disturbance profile was used for simulating dynamically the complete process behavior. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32983 Basualdo, Marta Susana; García, Maximiliano Pablo; Nieto Degliuomini, Lucas; Rullo, Pablo Gabriel; Model predictive control to ensure high quality hydrogen production for fuel cells; Elsevier; International Journal of Hydrogen Energy; 39; 16; 1-2014; 8635-8649 0360-3199 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/32983 |
| identifier_str_mv |
Basualdo, Marta Susana; García, Maximiliano Pablo; Nieto Degliuomini, Lucas; Rullo, Pablo Gabriel; Model predictive control to ensure high quality hydrogen production for fuel cells; Elsevier; International Journal of Hydrogen Energy; 39; 16; 1-2014; 8635-8649 0360-3199 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2013.12.069 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913030048 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597259434852352 |
| score |
12.976206 |