Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach

Autores
Francesconi, Javier Andres; Oliva, Diego Gabriel; Aguirre, Pio Antonio
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work addresses the optimal design of a flexible heat exchanger network using model-based optimization, applied to hydrogen production by means of an ethanol steam reforming process. High efficiencies are obtained at different hydrogen production levels ranging from 25 to 100% of a nominal output. System structure, heat exchanger sizing, and operation conditions are simultaneously settled, ensuring both operational feasibility and optimality. The system involves a reforming reactor, vaporization and reheating equipment, combustors, and a heat exchanger network system. A multi-period nonlinear optimization problem (NLP) was formulated to account for the production level distribution. Equipment sizing constraints and structural constraints link the different scenarios. The trade-off between area and efficiency is analyzed using a multi-objective epsilon-constraint approach. Models were developed in the GAMS environment. The resulting solutions, for the maximum area case, maintain alcohol combustion at low levels showing efficiencies around 63% in each operational level. Pareto Optimal diagram shows that a 1% reduction of efficiency allows a 50% decrease in total required heat exchanger area by 50%.
Fil: Francesconi, Javier Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Industria; Argentina
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina
Materia
Ethanol Processor
Energy Efficiency
Flexible Heat Exchanger Network
Hydrogen
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46980

id CONICETDig_da7729c087e8d7b9ff722afb3669f8f9
oai_identifier_str oai:ri.conicet.gov.ar:11336/46980
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approachFrancesconi, Javier AndresOliva, Diego GabrielAguirre, Pio AntonioEthanol ProcessorEnergy EfficiencyFlexible Heat Exchanger NetworkHydrogenhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work addresses the optimal design of a flexible heat exchanger network using model-based optimization, applied to hydrogen production by means of an ethanol steam reforming process. High efficiencies are obtained at different hydrogen production levels ranging from 25 to 100% of a nominal output. System structure, heat exchanger sizing, and operation conditions are simultaneously settled, ensuring both operational feasibility and optimality. The system involves a reforming reactor, vaporization and reheating equipment, combustors, and a heat exchanger network system. A multi-period nonlinear optimization problem (NLP) was formulated to account for the production level distribution. Equipment sizing constraints and structural constraints link the different scenarios. The trade-off between area and efficiency is analyzed using a multi-objective epsilon-constraint approach. Models were developed in the GAMS environment. The resulting solutions, for the maximum area case, maintain alcohol combustion at low levels showing efficiencies around 63% in each operational level. Pareto Optimal diagram shows that a 1% reduction of efficiency allows a 50% decrease in total required heat exchanger area by 50%.Fil: Francesconi, Javier Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Industria; ArgentinaFil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; ArgentinaPergamon-Elsevier Science Ltd2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46980Francesconi, Javier Andres; Oliva, Diego Gabriel; Aguirre, Pio Antonio; Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 42; 5; 12-2016; 2736-27470360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2016.10.156info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319916332487info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:05Zoai:ri.conicet.gov.ar:11336/46980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:05.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
title Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
spellingShingle Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
Francesconi, Javier Andres
Ethanol Processor
Energy Efficiency
Flexible Heat Exchanger Network
Hydrogen
title_short Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
title_full Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
title_fullStr Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
title_full_unstemmed Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
title_sort Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach
dc.creator.none.fl_str_mv Francesconi, Javier Andres
Oliva, Diego Gabriel
Aguirre, Pio Antonio
author Francesconi, Javier Andres
author_facet Francesconi, Javier Andres
Oliva, Diego Gabriel
Aguirre, Pio Antonio
author_role author
author2 Oliva, Diego Gabriel
Aguirre, Pio Antonio
author2_role author
author
dc.subject.none.fl_str_mv Ethanol Processor
Energy Efficiency
Flexible Heat Exchanger Network
Hydrogen
topic Ethanol Processor
Energy Efficiency
Flexible Heat Exchanger Network
Hydrogen
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work addresses the optimal design of a flexible heat exchanger network using model-based optimization, applied to hydrogen production by means of an ethanol steam reforming process. High efficiencies are obtained at different hydrogen production levels ranging from 25 to 100% of a nominal output. System structure, heat exchanger sizing, and operation conditions are simultaneously settled, ensuring both operational feasibility and optimality. The system involves a reforming reactor, vaporization and reheating equipment, combustors, and a heat exchanger network system. A multi-period nonlinear optimization problem (NLP) was formulated to account for the production level distribution. Equipment sizing constraints and structural constraints link the different scenarios. The trade-off between area and efficiency is analyzed using a multi-objective epsilon-constraint approach. Models were developed in the GAMS environment. The resulting solutions, for the maximum area case, maintain alcohol combustion at low levels showing efficiencies around 63% in each operational level. Pareto Optimal diagram shows that a 1% reduction of efficiency allows a 50% decrease in total required heat exchanger area by 50%.
Fil: Francesconi, Javier Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Industria; Argentina
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina
description This work addresses the optimal design of a flexible heat exchanger network using model-based optimization, applied to hydrogen production by means of an ethanol steam reforming process. High efficiencies are obtained at different hydrogen production levels ranging from 25 to 100% of a nominal output. System structure, heat exchanger sizing, and operation conditions are simultaneously settled, ensuring both operational feasibility and optimality. The system involves a reforming reactor, vaporization and reheating equipment, combustors, and a heat exchanger network system. A multi-period nonlinear optimization problem (NLP) was formulated to account for the production level distribution. Equipment sizing constraints and structural constraints link the different scenarios. The trade-off between area and efficiency is analyzed using a multi-objective epsilon-constraint approach. Models were developed in the GAMS environment. The resulting solutions, for the maximum area case, maintain alcohol combustion at low levels showing efficiencies around 63% in each operational level. Pareto Optimal diagram shows that a 1% reduction of efficiency allows a 50% decrease in total required heat exchanger area by 50%.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46980
Francesconi, Javier Andres; Oliva, Diego Gabriel; Aguirre, Pio Antonio; Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 42; 5; 12-2016; 2736-2747
0360-3199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46980
identifier_str_mv Francesconi, Javier Andres; Oliva, Diego Gabriel; Aguirre, Pio Antonio; Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 42; 5; 12-2016; 2736-2747
0360-3199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2016.10.156
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319916332487
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268644419043328
score 13.13397