PEM Fuel Cell Systems

Autores
Kunusch, Cristian; Puleston, Pablo Federico; Mayosky, Miguel Angel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Proton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.
Facultad de Ingeniería
Materia
Ingeniería Electrónica
PEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/137547

id SEDICI_fd067d8304b23854c863ba9458142333
oai_identifier_str oai:sedici.unlp.edu.ar:10915/137547
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling PEM Fuel Cell SystemsKunusch, CristianPuleston, Pablo FedericoMayosky, Miguel AngelIngeniería ElectrónicaPEMProton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.Facultad de IngenieríaSpringer2012info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf13-33http://sedici.unlp.edu.ar/handle/10915/137547enginfo:eu-repo/semantics/altIdentifier/isbn/978-1-4471-2431-3info:eu-repo/semantics/altIdentifier/issn/1430-9491info:eu-repo/semantics/altIdentifier/issn/2193-1577info:eu-repo/semantics/altIdentifier/doi/10.1007/978-1-4471-2431-3_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:16Zoai:sedici.unlp.edu.ar:10915/137547Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:17.058SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv PEM Fuel Cell Systems
title PEM Fuel Cell Systems
spellingShingle PEM Fuel Cell Systems
Kunusch, Cristian
Ingeniería Electrónica
PEM
title_short PEM Fuel Cell Systems
title_full PEM Fuel Cell Systems
title_fullStr PEM Fuel Cell Systems
title_full_unstemmed PEM Fuel Cell Systems
title_sort PEM Fuel Cell Systems
dc.creator.none.fl_str_mv Kunusch, Cristian
Puleston, Pablo Federico
Mayosky, Miguel Angel
author Kunusch, Cristian
author_facet Kunusch, Cristian
Puleston, Pablo Federico
Mayosky, Miguel Angel
author_role author
author2 Puleston, Pablo Federico
Mayosky, Miguel Angel
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería Electrónica
PEM
topic Ingeniería Electrónica
PEM
dc.description.none.fl_txt_mv Proton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.
Facultad de Ingeniería
description Proton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/137547
url http://sedici.unlp.edu.ar/handle/10915/137547
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-1-4471-2431-3
info:eu-repo/semantics/altIdentifier/issn/1430-9491
info:eu-repo/semantics/altIdentifier/issn/2193-1577
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-1-4471-2431-3_2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
13-33
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616202024910848
score 13.070432