Root Systems in Lie Theory: From the Classic Definition to Nowadays

Autores
Angiono, Iván Ezequiel
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The purpose of this article is to discuss the role played by root systems in the theory of Lie algebras and related objects in representation theory, with focus on the combinatorial description and properties.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Root systems
Lie superalgebras
Nichols algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258036

id CONICETDig_533082e58921a6a69765a3f97f27cd1d
oai_identifier_str oai:ri.conicet.gov.ar:11336/258036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Root Systems in Lie Theory: From the Classic Definition to NowadaysAngiono, Iván EzequielRoot systemsLie superalgebrasNichols algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The purpose of this article is to discuss the role played by root systems in the theory of Lie algebras and related objects in representation theory, with focus on the combinatorial description and properties.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Mathematical Society2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258036Angiono, Iván Ezequiel; Root Systems in Lie Theory: From the Classic Definition to Nowadays; American Mathematical Society; Notices of the American Mathematical Society; 71; 5; 5-2024; 605-6121088-9477CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/notices/202405/rnoti-p605.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1090/noti2906info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:33Zoai:ri.conicet.gov.ar:11336/258036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:33.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Root Systems in Lie Theory: From the Classic Definition to Nowadays
title Root Systems in Lie Theory: From the Classic Definition to Nowadays
spellingShingle Root Systems in Lie Theory: From the Classic Definition to Nowadays
Angiono, Iván Ezequiel
Root systems
Lie superalgebras
Nichols algebras
title_short Root Systems in Lie Theory: From the Classic Definition to Nowadays
title_full Root Systems in Lie Theory: From the Classic Definition to Nowadays
title_fullStr Root Systems in Lie Theory: From the Classic Definition to Nowadays
title_full_unstemmed Root Systems in Lie Theory: From the Classic Definition to Nowadays
title_sort Root Systems in Lie Theory: From the Classic Definition to Nowadays
dc.creator.none.fl_str_mv Angiono, Iván Ezequiel
author Angiono, Iván Ezequiel
author_facet Angiono, Iván Ezequiel
author_role author
dc.subject.none.fl_str_mv Root systems
Lie superalgebras
Nichols algebras
topic Root systems
Lie superalgebras
Nichols algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The purpose of this article is to discuss the role played by root systems in the theory of Lie algebras and related objects in representation theory, with focus on the combinatorial description and properties.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description The purpose of this article is to discuss the role played by root systems in the theory of Lie algebras and related objects in representation theory, with focus on the combinatorial description and properties.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258036
Angiono, Iván Ezequiel; Root Systems in Lie Theory: From the Classic Definition to Nowadays; American Mathematical Society; Notices of the American Mathematical Society; 71; 5; 5-2024; 605-612
1088-9477
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258036
identifier_str_mv Angiono, Iván Ezequiel; Root Systems in Lie Theory: From the Classic Definition to Nowadays; American Mathematical Society; Notices of the American Mathematical Society; 71; 5; 5-2024; 605-612
1088-9477
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/notices/202405/rnoti-p605.pdf
info:eu-repo/semantics/altIdentifier/doi/10.1090/noti2906
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613371702280192
score 13.070432