Atomistic simulation of the mechanical properties of nanoporous gold
- Autores
- Rodriguez Nieva. J. F.; Ruestes, Carlos Javier; Tang, Yizhe; Bringa, Eduardo Marcial
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- 7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.
Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; China
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Molecular Dynamics (Md)
Plastic Deformation
Nanoporous
Nanovoid Collapse
Dislocation Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32241
Ver los metadatos del registro completo
id |
CONICETDig_b4fccc350585920daa8b20ea190fea99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32241 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Atomistic simulation of the mechanical properties of nanoporous goldRodriguez Nieva. J. F.Ruestes, Carlos JavierTang, YizheBringa, Eduardo MarcialMolecular Dynamics (Md)Plastic DeformationNanoporousNanovoid CollapseDislocation Dynamicshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/27–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; ChinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32241Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-761359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414005692info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.07.051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:19:12Zoai:ri.conicet.gov.ar:11336/32241instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:19:13.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Atomistic simulation of the mechanical properties of nanoporous gold |
title |
Atomistic simulation of the mechanical properties of nanoporous gold |
spellingShingle |
Atomistic simulation of the mechanical properties of nanoporous gold Rodriguez Nieva. J. F. Molecular Dynamics (Md) Plastic Deformation Nanoporous Nanovoid Collapse Dislocation Dynamics |
title_short |
Atomistic simulation of the mechanical properties of nanoporous gold |
title_full |
Atomistic simulation of the mechanical properties of nanoporous gold |
title_fullStr |
Atomistic simulation of the mechanical properties of nanoporous gold |
title_full_unstemmed |
Atomistic simulation of the mechanical properties of nanoporous gold |
title_sort |
Atomistic simulation of the mechanical properties of nanoporous gold |
dc.creator.none.fl_str_mv |
Rodriguez Nieva. J. F. Ruestes, Carlos Javier Tang, Yizhe Bringa, Eduardo Marcial |
author |
Rodriguez Nieva. J. F. |
author_facet |
Rodriguez Nieva. J. F. Ruestes, Carlos Javier Tang, Yizhe Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Ruestes, Carlos Javier Tang, Yizhe Bringa, Eduardo Marcial |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Molecular Dynamics (Md) Plastic Deformation Nanoporous Nanovoid Collapse Dislocation Dynamics |
topic |
Molecular Dynamics (Md) Plastic Deformation Nanoporous Nanovoid Collapse Dislocation Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery. Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; China Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32241 Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-76 1359-6454 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32241 |
identifier_str_mv |
Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-76 1359-6454 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414005692 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.07.051 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606535903641600 |
score |
13.046268 |