Atomistic simulation of the mechanical properties of nanoporous gold

Autores
Rodriguez Nieva. J. F.; Ruestes, Carlos Javier; Tang, Yizhe; Bringa, Eduardo Marcial
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.
Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; China
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Molecular Dynamics (Md)
Plastic Deformation
Nanoporous
Nanovoid Collapse
Dislocation Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32241

id CONICETDig_b4fccc350585920daa8b20ea190fea99
oai_identifier_str oai:ri.conicet.gov.ar:11336/32241
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Atomistic simulation of the mechanical properties of nanoporous goldRodriguez Nieva. J. F.Ruestes, Carlos JavierTang, YizheBringa, Eduardo MarcialMolecular Dynamics (Md)Plastic DeformationNanoporousNanovoid CollapseDislocation Dynamicshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/27–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; ChinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32241Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-761359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414005692info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.07.051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:19:12Zoai:ri.conicet.gov.ar:11336/32241instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:19:13.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Atomistic simulation of the mechanical properties of nanoporous gold
title Atomistic simulation of the mechanical properties of nanoporous gold
spellingShingle Atomistic simulation of the mechanical properties of nanoporous gold
Rodriguez Nieva. J. F.
Molecular Dynamics (Md)
Plastic Deformation
Nanoporous
Nanovoid Collapse
Dislocation Dynamics
title_short Atomistic simulation of the mechanical properties of nanoporous gold
title_full Atomistic simulation of the mechanical properties of nanoporous gold
title_fullStr Atomistic simulation of the mechanical properties of nanoporous gold
title_full_unstemmed Atomistic simulation of the mechanical properties of nanoporous gold
title_sort Atomistic simulation of the mechanical properties of nanoporous gold
dc.creator.none.fl_str_mv Rodriguez Nieva. J. F.
Ruestes, Carlos Javier
Tang, Yizhe
Bringa, Eduardo Marcial
author Rodriguez Nieva. J. F.
author_facet Rodriguez Nieva. J. F.
Ruestes, Carlos Javier
Tang, Yizhe
Bringa, Eduardo Marcial
author_role author
author2 Ruestes, Carlos Javier
Tang, Yizhe
Bringa, Eduardo Marcial
author2_role author
author
author
dc.subject.none.fl_str_mv Molecular Dynamics (Md)
Plastic Deformation
Nanoporous
Nanovoid Collapse
Dislocation Dynamics
topic Molecular Dynamics (Md)
Plastic Deformation
Nanoporous
Nanovoid Collapse
Dislocation Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv 7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.
Fil: Rodriguez Nieva. J. F.. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute of Applied Mathematics and Mechanics; China
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
description 7–109 s−1 using molecular dynamics simulations. We consider the low-porosity regime (porosity of ∼5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting “shear” dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress σVM in the hardening regime features two possible power-law dependencies as a function of dislocation density ρd: in the initial stages of plastic deformation we obtained σVM∝ρd2, but changes to Taylor hardening σVM∝ρd1/2 at higher dislocation densities. The velocity of dislocations is estimated to be ∼60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation–dislocation and dislocation–pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to “dislocation-free” plasticity are instead due to the aggregation of those vacancies left behind during recovery.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32241
Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-76
1359-6454
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32241
identifier_str_mv Bringa, Eduardo Marcial; Tang, Yizhe; Ruestes, Carlos Javier; Rodriguez Nieva. J. F.; Atomistic simulation of the mechanical properties of nanoporous gold; Elsevier; Acta Materialia; 80; 8-2014; 67-76
1359-6454
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414005692
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.07.051
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606535903641600
score 13.046268