Mechanical response of nanoporous gold
- Autores
- Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.
Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos;
Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos;
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina;
Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos; - Materia
-
Nanoporous
Mechanical Properties
Molecular Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2279
Ver los metadatos del registro completo
id |
CONICETDig_55c710ce62fae080e65cae6af4b3a872 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2279 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mechanical response of nanoporous goldFarkas, DianaCaro, AlfredoBringa, Eduardo MarcialCrowson, DouglasNanoporousMechanical PropertiesMolecular Dynamicshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos;Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos;Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina;Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos;Pergamon-elsevier Science Ltd2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2279Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-32561359-6454enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645413001353info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2013.02.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:36Zoai:ri.conicet.gov.ar:11336/2279instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:37.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mechanical response of nanoporous gold |
title |
Mechanical response of nanoporous gold |
spellingShingle |
Mechanical response of nanoporous gold Farkas, Diana Nanoporous Mechanical Properties Molecular Dynamics |
title_short |
Mechanical response of nanoporous gold |
title_full |
Mechanical response of nanoporous gold |
title_fullStr |
Mechanical response of nanoporous gold |
title_full_unstemmed |
Mechanical response of nanoporous gold |
title_sort |
Mechanical response of nanoporous gold |
dc.creator.none.fl_str_mv |
Farkas, Diana Caro, Alfredo Bringa, Eduardo Marcial Crowson, Douglas |
author |
Farkas, Diana |
author_facet |
Farkas, Diana Caro, Alfredo Bringa, Eduardo Marcial Crowson, Douglas |
author_role |
author |
author2 |
Caro, Alfredo Bringa, Eduardo Marcial Crowson, Douglas |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nanoporous Mechanical Properties Molecular Dynamics |
topic |
Nanoporous Mechanical Properties Molecular Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments. Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos; Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos; Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina; Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos; |
description |
We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2279 Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-3256 1359-6454 |
url |
http://hdl.handle.net/11336/2279 |
identifier_str_mv |
Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-3256 1359-6454 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645413001353 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2013.02.013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270088596553728 |
score |
13.13397 |