Mechanical response of nanoporous gold

Autores
Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.
Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos;
Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos;
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina;
Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos;
Materia
Nanoporous
Mechanical Properties
Molecular Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2279

id CONICETDig_55c710ce62fae080e65cae6af4b3a872
oai_identifier_str oai:ri.conicet.gov.ar:11336/2279
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mechanical response of nanoporous goldFarkas, DianaCaro, AlfredoBringa, Eduardo MarcialCrowson, DouglasNanoporousMechanical PropertiesMolecular Dynamicshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos;Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos;Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina;Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos;Pergamon-elsevier Science Ltd2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2279Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-32561359-6454enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645413001353info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2013.02.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:36Zoai:ri.conicet.gov.ar:11336/2279instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:37.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mechanical response of nanoporous gold
title Mechanical response of nanoporous gold
spellingShingle Mechanical response of nanoporous gold
Farkas, Diana
Nanoporous
Mechanical Properties
Molecular Dynamics
title_short Mechanical response of nanoporous gold
title_full Mechanical response of nanoporous gold
title_fullStr Mechanical response of nanoporous gold
title_full_unstemmed Mechanical response of nanoporous gold
title_sort Mechanical response of nanoporous gold
dc.creator.none.fl_str_mv Farkas, Diana
Caro, Alfredo
Bringa, Eduardo Marcial
Crowson, Douglas
author Farkas, Diana
author_facet Farkas, Diana
Caro, Alfredo
Bringa, Eduardo Marcial
Crowson, Douglas
author_role author
author2 Caro, Alfredo
Bringa, Eduardo Marcial
Crowson, Douglas
author2_role author
author
author
dc.subject.none.fl_str_mv Nanoporous
Mechanical Properties
Molecular Dynamics
topic Nanoporous
Mechanical Properties
Molecular Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.
Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos;
Fil: Caro, Alfredo. Material Science and Technology Division, Los Alamos National Laboratory; Estados Unidos;
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina;
Fil: Crowson, Douglas. Virginia Polytechnic Institute; Estados Unidos;
description We report the results of computational tensile and compressive tests for model bi-continuous nanoporous gold structures using atomistic simulations with empirical many-body potentials and molecular dynamics. The results are compared with the predictions of scaling laws for coarser-scale foams and with available experimental data. We find a surprising substantial tension/compression asymmetry in yield due to the surface stress that sets the filament under compression, providing a bias favoring yielding in compression. We provide a model for our results based on a ligament strength value close to the theoretical strength of Au, and the surface stress. The model predicts a significant tension/compression asymmetry for ligament sizes below ∼10 nm and pore collapse for ligament sizes below 1 nm. We also observe an unexpected compaction tendency under tension characterized by a decrease in the total volume of the sample of 15% for samples deformed under tension by 30%. The mechanism of the compaction involves a decrease in the average pore size and pore collapse resulting from plasticity within the ligaments.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2279
Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-3256
1359-6454
url http://hdl.handle.net/11336/2279
identifier_str_mv Farkas, Diana; Caro, Alfredo; Bringa, Eduardo Marcial; Crowson, Douglas; Mechanical response of nanoporous gold; Pergamon-elsevier Science Ltd; Acta Materialia; 61; 9; 5-2013; 3249-3256
1359-6454
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645413001353
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2013.02.013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270088596553728
score 13.13397